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ARTICLE INFO ABSTRACT

Edited by Dr. RENJIE CHEN Airborne pollen is a key environmental allergen affecting millions across China. As pollen levels and allergy
prevalence continue to rise under rapid urbanization and climate change, developing spatially explicit, long-term

Keywords: pollen datasets becomes increasingly important for public health and ecological risk assessment. In this study, we
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developed a novel ensemble machine learning framework integrating random forest and gradient boosting
models to estimate daily tree and herbaceous pollen concentrations across mainland China from 2011 to 2023.
Models were trained using daily pollen data from 27 monitoring sites during 2019-2024 and a rich set of pre-
dictors, including meteorological, vegetation, land use, and spatiotemporal variables. By applying the trained
models to historical environmental datasets, we reconstructed nationwide daily pollen concentrations for
2011-2023 to extend the temporal coverage beyond the observational record. The models achieved high ac-
curacy, with R? values of 0.90 (tree) and 0.89 (herbaceous), and root mean square errors of 0.58 and 0.49,
respectively. Tree pollen peaked in early spring in eastern, northeastern, central, and southwestern regions, while
herbaceous pollen peaked in late summer in northern and northwestern areas. Seasonal timing, temperature, and
vegetation indices were key drivers, with short-term lagged temperature (0-7 days) strongly influencing pre-
dictions. This study provides the first nationwide, long-term, daily pollen dataset for China derived from
observation-based modeling and historical reconstruction, serving as an important resource for ecological
research and public health applications. The established modeling framework offers a robust foundation for
pollen exposure assessment, allergy forecasting, and climate-responsive risk management of aeroallergens under
changing environmental conditions.

1. Introduction 2013), with approximately 200 million affected individuals in China
alone (Zhou et al., 2022). The rising prevalence of allergic diseases in

Airborne pollen is a major environmental trigger for allergic dis- recent decades has been linked to climate-related changes in pollen
eases, impacting 20-30 % of the global population (Pawankar et al., dynamics, including increased pollen production, extended pollen
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seasons, and enhanced allergenicity (Damialis et al., 2019). These
changes not only pose direct public health threats but also represent
important ecological indicators of vegetation response to climate and
land use change (Ziska et al., 2019). This highlights the critical need for
advanced spatiotemporal modeling and real-time pollen forecasting to
inform allergy prevention, public health strategies, and urban ecological
planning.

Airborne pollen concentrations are significantly influenced by
meteorological factors, including temperature, humidity, and wind
speed and direction (Maya-Manzano et al., 2017). Temperature gener-
ally exhibits a positive association with pollen levels, whereas humidity
and precipitation are typically negatively correlated (Valipour Shokouhi
et al., 2024a; Rahman et al., 2020; Lo et al., 2021; Khwarahm et al.,
2014; Ritenberga et al., 2018; Tseng et al., 2018). Additionally, remote
sensing data provide essential information for pollen modelling
(Schnake-Mahl and Sommers, 2017; Li et al., 2019). Vegetation indices,
such as normalized difference vegetation index (NDVI), captures vege-
tation activity and phenological stages linked to pollen release, while
land cover and topographic data characterize source habitats and
dispersal pathways (Valipour Shokouhi et al., 2024a; Lugonja et al.,
2019). These spatially continuous indicators complement ground ob-
servations and improve the characterization of airborne pollen
dynamics.

Many studies have developed predictive models that incorporate
phenological progress and environmental variables to estimate the
spatiotemporal distribution of airborne pollen (Valipour Shokouhi et al.,
2024a, 2024b; Lo et al., 2021). While traditional statistical models such
as multiple linear regression provide interpretability, they often fail to
capture the complexities of nonlinear relationships between pollen and
environmental factors (Cotos-Yanez et al., 2004; Hjort et al., 2016).
Recently, advanced machine learning algorithms such as random forest,
gradient boosting, and artificial neural networks, have been demon-
strated superior predictive capabilities (Valipour Shokouhi et al., 2024b;
Liu et al., 2022; Puc, 2012; Ouyang et al., 2025a; Ruan et al., 2024),
particularly when utilizing ensemble methods that integrate multiple
approaches.

In Europe and North America, several well-established operational
pollen forecasting systems provide daily or near-real-time predictions
for major allergenic pollen types. For example, the System for Integrated
modeLing of Atmospheric coMposition (SILAM) developed by the
Finnish Meteorological Institute (FMI) and operationalized by the
Copernicus Atmosphere Monitoring Service (CAMS) deliver regional
pollen forecasts across Europe using advanced atmospheric composition
models (System, 2025; Forecasting, 2025). Similarly, in the United
States, daily pollen forecasts and concentration maps are publicly
available through platforms such as Pollen.com (Pollen.com, 2025).
These systems typically integrate real-time meteorological data, vege-
tation indices, and process-based or statistical modeling approaches to
support public health alerts and allergy prevention. However, such
comprehensive forecasting infrastructure remains largely underdevel-
oped across much of Asia, particularly in China. Existing efforts are often
limited to local-scale studies or short-term monitoring, lacking
long-term, high-resolution datasets or national coverage. Moreover, few
systems fully leverage multi-source environmental data and advanced
modeling techniques.

Beyond forecasting, pollen datasets also serve as ecological in-
dicators that reflect vegetation composition, phenology, and climate
interactions at landscape and national scales. This study aims to develop
a novel, machine learning framework to estimate daily tree and herba-
ceous pollen concentrations across mainland China from 2011 to 2023
at a 10-km spatial resolution. By integrating diverse environmental data,
including meteorological, vegetation, geographic, and temporal vari-
ables, this study investigates the relationships between key environ-
mental factors and pollen concentrations. Ultimately, it seeks to create
the first long-term, high-resolution daily pollen dataset for China,
providing a valuable tool for ecological monitoring, landscape
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management, and public health applications.
2. Methods
2.1. Pollen data

Daily airborne pollen concentrations were measured at 27 moni-
toring sites established by Beijing Tongren Hospital, covering a diverse
range of ecological and climatic zones across mainland China (Fig. 1).
Monitoring was conducted during the active pollen seasons from March
to October each year between 2019 and 2024. Detailed monitoring pe-
riods for each site are provided in Supplementary Table S1.

Pollen sampling employed Durham-type samplers based on the
gravimetric method, with collection slides replaced every 24 h.
Although Durham traps are known to have lower sampling efficiency
compared to volumetric methods such as Hirst-type samplers, they
remain widely used in China due to their simplicity, cost-effectiveness,
and the historical continuity of their use. To ensure data consistency
and reliability, all monitoring sites followed standardized protocols for
slide preparation, staining, and pollen identification. Slides were stained
with alkaline fuchsin to enhance pollen grain visibility and examined
under a light microscope (Olympus BX-51, 200 x) for manual counting
and taxonomic classification.

Because gravimetric methods can underestimate atmospheric pollen
concentrations due to meteorological influences, we additionally con-
verted Durham-derived counts to volumetric-equivalent concentrations.
This conversion was derived from an accuracy evaluation conducted by
our research team, which compared simultaneous measurements from
Durham-type samplers and a newly developed volumetric suction
sampler (Ouyang et al., 2025b). The study demonstrated a strong cor-
relation (R% = 0.7605) and established the following linear conversion
equation:

Y = 2.065X — 3.962

where X represents pollen concentrations collected by the Durham
sampler (grains/1000 mm?), and Y represents estimated volumetric
concentrations (grains/m>). This conversion was uniformly applied
across all sites to improve comparability with volumetric-based mea-
surements and reduce uncertainty associated with gravimetric sampling.

Mainland China typically experiences two distinct pollen seasons
annually. The spring season is primarily characterized by tree pollens,
while the autumn season is marked by elevated concentrations of
allergenic herbaceous pollen. In this study, we estimated total pollen
concentrations for tree and herbaceous pollen, respectively. Tree pollen
includes taxa such as Cupressaceae (cypress), Salicaceae (willow and
poplar), Ulmaceae (elm), Betulaceae (birch), Pinaceae (pine), and Ole-
aceae (white ash), which predominantly contribute to pollen levels
during the spring and early summer. In contrast, herbaceous pollen
mainly consists of taxa from Asteraceae (including both Artemisia and
non-Artemisia species), Moraceae (genus Humulus), Poaceae (grasses),
and Chenopodiaceae (goosefoot), which are more abundant in late
summer and autumn.

2.2. Explanatory variables

The explanatory variables used in this study were derived from at-
mospheric reanalysis datasets and satellite remote sensing products. We
incorporated a range of variables potentially influencing pollen con-
centrations, including meteorological variables, vegetation-related var-
iables, land use types, spatial and temporal features (Table 1).

Daily meteorological variables, including ambient temperature,
precipitation, relative humidity, surface pressure, wind speed, and wind
direction, were extracted for buffers of 1 km, 5km, and 10 km sur-
rounding each pollen monitoring site. Wind speed and direction at 10 m
were derived from the eastward (U) and northward (V) wind
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Fig. 1. Spatial distribution of pollen monitoring stations.

components. To account for the lagged effects of weather on pollen
emission and dispersion, we collected daily values of each meteorolog-
ical variable for the day of monitoring (lag 0) as well as for the preceding
1-7 days (lags 1-7).

In addition, we incorporated vegetation-related factors, including
vegetation indices and land use characteristics, to reflect plant growth
conditions and surrounding land cover. Specifically, we extracted the
normalized difference vegetation index (NDVI), enhanced vegetation
index (EVI), and leaf area index (LAI) for both high and low vegetation
types across the 1 km, 5 km, and 10 km buffer zones. We also calculated
the proportion of major land use types (e.g., cropland, forest, shrubland,
grassland, and water) within each buffer zone to estimate their potential
contributions to local pollen emissions. Spatial features included longi-
tude, latitude, and elevation for each monitoring site. Temporal features
such as day of the year, week of the year, month, and season. In addition,
we created a binary indicator (1 = peak season, 0 = non-peak season) to
distinguish periods of high and low pollen activity. The peak season for
tree pollen was defined as March to June, while for herbaceous pollen, it
was defined as July to October.

To ensure spatial and temporal alignment across datasets, bilinear
interpolation was applied to resample meteorological variables and LAI
data to a uniform spatial resolution of 1 km. Additionally, NDVI and EVI
data, initially available at a 16-day temporal resolution, were resampled
to daily values using spatiotemporal interpolation techniques. These
preprocessing steps were implemented to maintain consistency with
daily pollen concentration data and to enhance the accuracy of subse-
quent model training.

2.3. Statistical methods

In this study, we used ensemble machine learning techniques to
model the relationship between a comprehensive set of 23 spatiotem-
poral variables and daily airborne pollen concentrations. Separate esti-
mate models were developed for tree and herbaceous pollen to account
for their distinct ecological and phenological characteristics.

Prior to model development, we applied natural logarithmic trans-
formation with an offset of 1 to daily pollen concentrations to reduce
right-skewness. Potential outliers were identified using the conventional
1.5 xinterquartile range (IQR) method, and observations with missing
values were excluded to ensure consistent model training.

2.4. Model development

For the models, we used two machine learning algorithms: the
Random Forest Regressor (RFR) and the Gradient Boosting Regressor
(GBR). The Random Forest Regressor was chosen to capture the complex
nonlinear relationships between environmental factors and pollen con-
centration while effectively reducing the risk of overfitting. The formula
for the Random Forest Regressor is expressed as:

= 32 A W

t=1

where: y represents the estimated pollen concentration, T is the number
of trees, and f;(x) denotes the estimation from the t-th tree.

The Gradient Boosting Regressor was used to construct additive
models by sequentially minimizing the residual errors from preceding
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Table 1
Summary of input variables and data sources for pollen concentration
estimation.

Variable Unit  Spatial Temporal Temporal Data source
resolution  resolution  scope
Meteorology
Temperature °C 1 km Daily 2011-2024  ERA5-Land
Relative % Daily
humidity Aggregated
Precipitation mm
Surface kPa
pressure
Wind speed m/s
Wind ©
direction
Vegetation
LAL low - 1 km Daily 2011-2024 ERA5-Land
LAL high Daily
Aggregated
NDVI - 1 km 16 days 2011-2024  MODIS/
EVI - Terra
Vegetation
Indices
Land use
type
Cropland % 30m Annual 2011-2024  Annual
Forest China Land
Shrub Cover
Grassland Dataset (
Water Yang and
Huang,
2024)
Spatial
Longitude - - - - -
Latitude
Elevation m 1 km - - Shuttle
Radar
Topography
Mission
Temporal
Day of the - - - - -
year
Week of the
year
Month
Season

Peak season

Abbreviations: LAI low = leaf area index for low vegetation; LAI high = leaf
area index for high vegetation; NDVI = normalized difference vegetation index;
EVI = enhanced vegetation index.

trees, thereby improving accuracy. Its formulation is as follows:
M
y= > o) @
m=1

where Y is the final output, M is the number of boosting iterations, 7
is the learning rate, hy,(x) is the fitted tree at iteration m.

To enhance model robustness and generalization, we implemented a
Voting Regressor that combines the outputs of the Random Forest Re-
gressor and the Gradient Boosting Regressor by averaging their
estimations.

2.5. Model optimization

To optimize model performance, we used feature selection and
hyperparameter tuning. Feature selection combined recursive feature
elimination with variable importance rankings from the Random Forest
algorithm to retain only the most informative features. Hyperparameter
tuning was performed using grid search with 10-fold cross-validation.
For the Random Forest Regressor, we tested tree counts of 200, 500,
and 1000; maximum depths of 10, 15, and 20; and minimum samples for
splitting and leaf nodes set at (5, 10) and (2, 5), respectively. For the
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Gradient Boosting Regressor, we evaluated the number of boosting it-
erations (100, 200, 300), learning rates (0.01, 0.1, 0.2), and maximum
tree depths (3, 5, 7). To prevent overfitting, early stopping was imple-
mented by monitoring validation loss during training. Model perfor-
mance was evaluated using the coefficient of determination (R?) and
root mean square error (RMSE).

2.6. Nationwide daily pollen maps

To generate nationwide daily pollen concentration maps, we applied
the optimized tree and herbaceous pollen models, selected based on
maximized R? and minimized RMSE from 10-fold cross-validation, to
gridded environmental variable datasets with a spatial resolution of
10 km. Environmental variables from March to October for each year
between 2011 and 2023 were used as inputs to estimate daily pollen
concentrations across China. Separate raster maps were produced for
tree and herbaceous pollen, both maintaining a consistent spatial reso-
lution of 10 km.

2.7. Sensitivity analyses

To evaluate the robustness of the model and examine its dependence
on temporal features, we conducted two sensitivity analyses. First, to
assess the extent to which model performance relied on calendar-based
temporal features, we re-trained the models after completely excluding
all temporal variables, including day of the year, week of the year,
month, and season. Second, to examine the model’s ability to generalize
across time and support historical reconstruction, we trained the models
using data from 2020 to 2024 and evaluated their performance on an
independent dataset from 2019.

3. Results
3.1. Seasonal patterns of pollen

Tree and herbaceous pollen displayed complementary seasonal pat-
terns, with tree pollen predominating in the spring and herbaceous
pollen becoming more prevalent in late summer to early autumn
(Fig. 2). Tree pollen exhibited an early-season peak, with concentrations
starting to rise in early March, reaching a sharp maximum in early to
mid-April, and then gradually declining by June. In contrast, herbaceous
pollen was sparsely present in early spring but began to rise significantly
in July, peaking sharply from late August to early September, before
tapering off by October. These seasonal trends were consistent across all
monitoring sites except Guangzhou, where herbaceous pollen concen-
trations were slightly higher than tree pollen in spring.

3.2. Model evaluation and validation

The models demonstrated high accuracy in estimating daily pollen
concentrations. For tree pollen, the overall R?> reached 0.90 with an
RMSE of 0.58, while the herbaceous pollen model achieved an R? of 0.89
and an RMSE of 0.49. Model performance remained robust during peak
pollen seasons (R? = 0.82-0.88) and non-peak periods (R? = 0.81-0.89)
(Table 2). Ten-fold cross-validation further confirmed the stability of the
models, with consistent results across folds (Supplementary Table S2).

Scatter plots of observed versus estimated values showed that most
estimates closely followed the 1:1 reference line (dashed red), suggest-
ing minimal bias across most concentration ranges (Fig. 3). However,
greater dispersion was observed at higher concentration ranges, with
both models tending to slightly underestimate extreme values. Daily
predicted values showed consistent spatiotemporal trends with obser-
vations in most cities, offering a more detailed appraisal of model per-
formance at the city level (Supplementary Figures S1 and S2).
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J. Yin et al.
Table 2
Cross-validated performance of the tree and herbaceous pollen models.
Pollen types Time period R? RMSE
Tree pollen Overall 0.90 0.58
Peak season 0.88 0.63
Non-peak season 0.81 0.35
Herbaceous pollen Overall 0.89 0.49
Peak season 0.82 0.38
Non-peak season 0.89 0.53

Abbreviation: R? = coefficient of determination; RMSE = root mean square
error.

3.3. Feature importance of explanatory variables

Feature importance analysis revealed that both tree and herbaceous
pollen models were primarily driven by temporal variables, with day of
year and week of year ranking highest (Fig. 4). Day of year alone
contributed 48.16 % and 25.96 % of the total importance in the tree and
herbaceous pollen models, respectively. Vegetation-related variables,
including LAIL, NDVI, and EVI within 5-10 km buffers, as well as mete-
orological variables such as temperature, relative humidity, and surface
pressure (including short-term lags), also showed high importance.

Despite these similarities, distinct differences in feature importance
were observed between the two models. For tree pollen, forest coverage
within 5 km buffers and temperature with a 7-day lag were the most
influential vegetation and meteorological variables, indicating that
stronger source vegetation and cumulative thermal dependencies. In
contrast, herbaceous pollen concentration was primarily driven by day
of the year and latitude, suggesting stronger geographic dependence.
Low vegetation LAI within 10 km and EVI within 5 km were the most
important vegetation variables for herbaceous pollen, suggesting that
local vegetation density and greenness play key roles in shaping its
variation.

3.4. Relationships between key variables and pollen concentration

Tree pollen concentrations peaking around the 90th day of the year
and declining steadily thereafter (Fig. 5a). Temperature with a 7-day lag
was negatively associated with tree pollen concentration, particularly
above 15 °C. Vegetation-related effects were modest: tree pollen showed
a slight increase with higher EVI values. Forest cover within a 5 km
buffer exhibited only limited and inconsistent influence, with minor
increases at low levels and little change beyond. Notably, increasing LAI
of low vegetation within a 10 km buffer was associated with reduced
tree pollen concentrations.

In contrast, herbaceous pollen remained low until around the 190th
day of the year, then rose sharply to peak between days 225 and 250,
aligning with elevated values in the late summer to early autumn weeks
(Fig. 5b). herbaceous pollen was negatively correlated with latitude
below 30°, but positively correlated above 30°, suggesting differing
regional dynamics. Higher low-vegetation LAI within a 10 km radius
was associated with reduced herbaceous pollen levels, whereas EVI
generally showed a positive association with herbaceous pollen. Surface
pressure exhibited a threshold response: below 89 kPa, herbaceous
pollen concentration increased with decreasing pressure, while above
this threshold, concentrations dropped abruptly and then remained
nearly constant.

3.5. Nationwide daily pollen concentration maps

Nationwide daily pollen concentrations from March to October
(2011-2023) were estimated at a 10 km resolution, with spatial patterns
illustrated using the average monthly pollen concentrations calculated
from daily predictions during the 2023 pollen season (Fig. 6). Tree
pollen concentrations were high from March to May, with extensive
coverage in eastern, northeastern, central, and southwestern China.
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From June to September, concentrations significantly decreased across
most regions, with a slight resurgence observed in October, primarily in
the southwestern areas. In contrast, herbaceous pollen concentrations
remained low from March to June. Beginning in July, concentrations
increased, reaching widespread high values in August and September,
particularly in the northern and northwestern regions. By October,
herbaceous pollen levels had largely diminished.

3.6. Sensitivity analyses

First, after excluding all temporal features, model performance
remained high, with the R? values of 0.88 for tree pollen and 0.85 for
herbaceous pollen, and RMSE values of 0.63 and 0.57, respectively.
Model performance remained robust during both peak pollen seasons
(R> = 0.83-0.85) and non-peak periods (R> = 0.79-0.84)
(Supplementary Table S3). Feature importance analysis revealed that
temperature-related variables were the dominant predictors for tree
pollen, whereas vegetation-related variables contributed most strongly
to herbaceous pollen estimation (Supplementary Figure S3). Second,
models trained on data from 2020 to 2024 and evaluated on the inde-
pendent 2019 dataset achieved R? values of 0.72 for tree pollen and 0.71
for herbaceous pollen. Estimated pollen concentrations were generally
consistent with observed values in 2019 (Supplementary Figure S4),
supporting the model’s capacity to extrapolate across years.

4. Discussion

In this study, we developed and validated machine learning models
to estimate daily concentrations of tree and herbaceous pollen across
mainland China at a 10 km resolution. The models achieved high ac-
curacy and revealed distinct seasonal and spatial patterns: tree pollen
peaked in early spring, primarily in eastern, northeastern, central, and
southwestern regions, while herbaceous pollen was most abundant in
late summer, especially in northern and northwestern areas of China.
Seasonal timing emerged as a dominant feature for both pollen types,
while the associated environmental predictors differed, with tree pollen
closely associated with source vegetation and temperature, and herba-
ceous pollen exhibited stronger correlations with latitude and vegeta-
tion index.

Numerous approaches have been developed to estimate airborne
pollen concentrations. Early studies primarily relied on statistical
models such as multiple linear regression (Ritenberga et al., 2016),
generalized additive models (Cotos-Yanez et al., 2004), or time series
methods (Rojo et al., 2017), which provided interpretable relationships
but often struggled to capture complex nonlinear interactions between
environmental factors and pollen levels. Process-based models,
including phenology-driven and temperature accumulation models
(Kmenta et al., 2017; Garcia-Mozo et al., 2000), have been used to
simulate flowering periods and emission timing for specific taxa. How-
ever, these models typically require detailed plant physiological data
and are less scalable for large-scale operational forecasting.

In parallel, mechanistic modeling approaches based on pollen
emission, dispersion, and deposition processes have been developed and
operationalized, particularly in Europe and North America (Siljamo
et al., 2013). These models simulate the entire pollen life cycle by
incorporating explicit parameterizations of emission based on meteo-
rological conditions and phenology, atmospheric transport driven by
wind fields, and removal through dry and wet deposition (Siljamo et al.,
2013; Zink et al., 2012). Notable examples include SILAM, and
COSMO-ART (Consortium for Small-scale Modelling-Aerosols and
Reactive Trace gases) (Vogel et al., 2009), which are directly coupled
with numerical weather prediction frameworks. Comprehensive air
quality models like CMAQ (Community Multiscale Air Quality Modeling
System) can be applied to pollen simulation (Ren et al., 2022). While
these physics-based models provide valuable insights into large-scale
pollen transport and interannual variability, they rely on extensive
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Fig. 3. Observed and estimated pollen concentrations for the tree and herbaceous pollen models. The dashed red line represents the 1:1 reference line. Note: Both

observed and estimated values are log-transformed daily pollen concentrations.

high-resolution input data (e.g., detailed pollen source maps,
species-specific emission potentials, and complex particle-process pa-
rameterizations), which can limit their applicability for operational
forecasting in data-scarce regions.

Recently, machine learning approaches have emerged as a powerful
alternative for modeling pollen concentrations. Algorithms such as
random forest, support vector machines (Zhao et al., 2018), and artifi-
cial neural networks (Puc, 2012) have shown clear advantages in
capturing nonlinear relationships and improving model accuracy. Un-
like mechanistic models that reproduce underlying processes, machine
learning methods infer empirical associations directly from observa-
tional data, making them particularly suitable for regions with limited
knowledge of pollen source distributions or species-specific emission
parameters. Studies conducted in Switzerland have demonstrated that
machine learning models outperform linear models, with the random

forest algorithm showing superior spatiotemporal performance and
achieving R? values ranging from 0.84 to 0.91 for daily pollen concen-
trations®. More recent advancements indicate that ensemble models
integrating multiple machine learning algorithms can further enhance
model performance. One such study reported that a model combining six
machine learning algorithms achieved R? values of 0.86 and 0.91 for
birch and grass pollen, respectively (Valipour Shokouhi et al., 2024b).
Our model similarly used this data-driven method. Rather than explic-
itly simulating emission and transport, it learns the complex associations
between multi-source environmental predictors (meteorological condi-
tions, vegetation indices, land use) and observed pollen concentrations.
This approach enables effective prediction even in data-scarce regions
and facilitates large-scale applications. Compared with existing studies
in China, our approach substantially extends spatial coverage and
temporal continuity while maintaining high predictive skill (Ouyang



J. Yin et al.

(a) Tree pollen

Ecotoxicology and Environmental Safety 309 (2026) 119659

Day of the year

Week of the year
Forest_5km
Temperature_lag7
LAI_low_10km
EVI_5km
Temperature_lag0
NDVI_5km

Relative humidity_lag0
LAI_high_10km
Relative humidity_lag1
Temperature_lag1
Surface pressure_lag0
Surface pressure_lag7

Surface pressure_lag1

48.16

(b) Herbaceous pollen

30 40 50
Importance (%)

Day of the year
Latitude

Week of the year
LAI_low_10km
EVI_5km

Surface pressure_lag0
NDVI_10km

Relative humidity_lag0
Water_5km
LAI_high_10km
Temperature_lag7
Temperature_lag0
Surface pressure_lag7
Temperature_lag3
Temperature_lag2

Surface pressure_lag3

25.96

10

20 30
Importance (%)

Fig. 4. Relative importance of variables in the tree and herbaceous pollen estimations. Abbreviations: NDVI = normalized difference vegetation index (5-km radius);
EVI = enhanced vegetation index (5-km radius); LAI = leaf area index (low/high vegetation, 10-km radius); lag0/lagl/lag2/lag3/lag7 = current day/1-day/2-day/3-

day/7-day lagged variables.

et al., 2025a; Li et al., 2025).

Notably, this is the first study to incorporate lagged meteorological
effects into pollen estimation models at a national scale in China. Pre-
vious studies have primarily relied on same-day meteorological condi-
tions (Valipour Shokouhi et al., 2024a, 2024b; Ravindra et al., 2022),
potentially overlooking the delayed responses of pollen production and
release to environmental drivers. Our results highlight the importance of
antecedent weather conditions, with lagged temperature (0-7 days)
identified as a significant feature for both pollen types (Aguilera et al.,
2014).

Seasonal timing variables, including day of year, consistently ranked
among the most important predictors, reflecting the inherently
phenology-driven nature of pollen dynamics (Li et al., 2022). However,
sensitivity analyses demonstrated that even after completely excluding

all calendar-based temporal variables, model performance remained
robust, with meteorological and vegetation-related predictors effec-
tively reconstructing pollen variability. This finding indicates that
temporal variables primarily function as parsimonious proxies for
phenological alignment rather than dominating model structure. The
distinct predictor importance profiles observed for tree versus herba-
ceous pollen further reflect differences in their ecological controls,
supporting the value of plant-type-specific modeling strategies.

This study has several notable strengths. First, to the best of our
knowledge, it is the first to develop large-scale models estimating daily
airborne pollen concentrations for both tree and herbaceous plants
across mainland China, incorporating multidimensional spatiotemporal
variables. Previous studies have primarily focused on individual cities,
with a lack of nationwide assessments. Second, by integrating random
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Fig. 6. Spatial distribution of average monthly tree and herbaceous pollen concentrations, calculated from daily estimates during the 2023 pollen season.

forest and gradient boosting regression, our ensemble model effectively
captures complex nonlinear relationships and temporal lags in meteo-
rological and phenological variables, substantially enhancing the
model’s accuracy and robustness. Third, the models account for the
lagged effects of meteorological variables, which are often overlooked in
prior research but are crucial for understanding pollen dynamics.
Despite the strong overall performance of our model, several sources
of uncertainty should be considered when interpreting the reconstructed
pollen fields. First, the historical estimates implicitly rely on the
assumption that the empirical relationships learned between environ-
mental predictors and pollen concentrations remain approximately
stable over time. Although year-specific meteorological and vegetation
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inputs were used for each reconstructed year, ongoing climate change,
land-use modification, and urban expansion may induce gradual non-
stationarity in pollen-environment relationships, particularly in re-
gions experiencing rapid environmental transitions (Wei et al., 2021;
Picornell et al., 2023). Similar concerns regarding temporal trans-
ferability have been raised in large-scale environmental exposure re-
constructions based on machine learning models (Valipour Shokouhi
et al., 2024a; Wei et al., 2021). In this study, reduced predictive per-
formance in independent hold-out years provides a quantitative indi-
cation of uncertainty associated with temporal transferability. As a
result, reconstructed pollen fields are expected to be more reliable for
capturing relative spatial contrasts and seasonal variability than for
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representing exact year-specific absolute concentrations, with poten-
tially higher uncertainty in earlier periods.

Second, spatial uncertainty arises from the uneven distribution of
monitoring stations across China and the country’s pronounced climatic
and ecological heterogeneity. Monitoring sites are concentrated in
eastern and central regions, whereas western China, characterized by
complex terrain, arid and high-altitude climates, and distinct vegetation
regimes, is relatively under-sampled. Predictions in these regions
therefore rely on spatial extrapolation across climatic zones and
increasing distances from monitoring locations, which may reduce
robustness. Previous large-scale environmental modeling studies have
shown that prediction uncertainty increases with distance to monitors
and when extrapolating across poorly represented climate regimes
(Valipour Shokouhi et al., 2024a; Adams-Groom et al., 2017). Conse-
quently, pollen estimates for western and high-altitude regions should
be interpreted with greater caution, particularly regarding absolute
concentration levels.

Third, additional uncertainty is introduced by the measurement
framework itself. Pollen observations were collected using Durham-type
gravimetric samplers, and gravimetric counts were converted to
volumetric-equivalent concentrations using an empirical calibration
equation. While this conversion facilitates comparability with interna-
tionally used volumetric units, applying a uniform conversion across
diverse climatic and ecological contexts may introduce spatially het-
erogeneous biases. Variations in pollen morphology, deposition veloc-
ity, wind conditions, and humidity can all influence gravimetric-to-
volumetric relationships (Weber, 2003; Suanno et al., 2021). Such
conversion-related uncertainty is likely to affect absolute concentration
estimates more strongly than relative spatial or seasonal patterns, which
are the primary focus of the present analysis.

Finally, the aggregation of pollen into broad tree and herbaceous
categories introduces a form of structural uncertainty. Dominant aller-
genic taxa within each group differ substantially in phenology, climatic
sensitivity, and allergenic potency, and aggregation may smooth sharp
peaks associated with highly allergenic species such as Betulaceae or
Artemisia, potentially underestimating short-term exposure risk (Lo
et al., 2021; Sofiev et al., 2024). Species-level modeling could improve
predictive specificity, enhance biological interpretability, and increase
relevance for clinical and epidemiological applications. However, such
modeling was not feasible in this study due to limitations in
species-resolved data availability and spatial continuity. As more
detailed and long-term taxon-level monitoring data become available,
future work will prioritize species-specific extensions to further refine
exposure assessment and health-oriented applications.

The high-resolution, daily pollen concentration fields developed in
this study provide a valuable resource for public health research and
practice, particularly in regions lacking routine pollen monitoring. By
offering spatially continuous exposure estimates, the dataset can support
epidemiological studies of pollen-related health outcomes, including
allergic rhinitis, asthma exacerbations, and other environmentally sen-
sitive conditions, using time-series or cohort-based designs. In addition,
the reconstructed historical pollen fields enable assessment of long-term
and seasonal exposure patterns, facilitating investigations of temporal
variability and potential links with climate and land-use change. The
modeling framework also has potential for operational application, as it
could be coupled with meteorological forecasts to support pollen risk
mapping and early warning, thereby complementing existing air quality
management and public health decision-making systems.

5. Conclusion

This study developed and validated machine learning models to es-
timate daily concentrations of tree and herbaceous pollen across China,
leveraging a comprehensive set of meteorological, vegetation, land use
type, spatial and temporal variables. The models demonstrated strong
performance in estimating pollen concentrations, with high accuracy
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and robustness across different pollen types. Nationwide daily allergenic
pollen concentration maps from 2011 to 2023 were generated at a
10 km spatial resolution, providing a detailed depiction of seasonal and
regional pollen dynamics. These findings enhance our understanding of
allergenic airborne pollen behavior in both space and time, offering
valuable resources for public health planning, allergy prevention, and
ecological forecasting in the context of changing environmental
conditions.
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