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A B S T R A C T

Airborne pollen is a key environmental allergen affecting millions across China. As pollen levels and allergy 
prevalence continue to rise under rapid urbanization and climate change, developing spatially explicit, long-term 
pollen datasets becomes increasingly important for public health and ecological risk assessment. In this study, we 
developed a novel ensemble machine learning framework integrating random forest and gradient boosting 
models to estimate daily tree and herbaceous pollen concentrations across mainland China from 2011 to 2023. 
Models were trained using daily pollen data from 27 monitoring sites during 2019–2024 and a rich set of pre
dictors, including meteorological, vegetation, land use, and spatiotemporal variables. By applying the trained 
models to historical environmental datasets, we reconstructed nationwide daily pollen concentrations for 
2011–2023 to extend the temporal coverage beyond the observational record. The models achieved high ac
curacy, with R2 values of 0.90 (tree) and 0.89 (herbaceous), and root mean square errors of 0.58 and 0.49, 
respectively. Tree pollen peaked in early spring in eastern, northeastern, central, and southwestern regions, while 
herbaceous pollen peaked in late summer in northern and northwestern areas. Seasonal timing, temperature, and 
vegetation indices were key drivers, with short-term lagged temperature (0–7 days) strongly influencing pre
dictions. This study provides the first nationwide, long-term, daily pollen dataset for China derived from 
observation-based modeling and historical reconstruction, serving as an important resource for ecological 
research and public health applications. The established modeling framework offers a robust foundation for 
pollen exposure assessment, allergy forecasting, and climate-responsive risk management of aeroallergens under 
changing environmental conditions.

1. Introduction

Airborne pollen is a major environmental trigger for allergic dis
eases, impacting 20–30 % of the global population (Pawankar et al., 

2013), with approximately 200 million affected individuals in China 
alone (Zhou et al., 2022). The rising prevalence of allergic diseases in 
recent decades has been linked to climate-related changes in pollen 
dynamics, including increased pollen production, extended pollen 
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seasons, and enhanced allergenicity (Damialis et al., 2019). These 
changes not only pose direct public health threats but also represent 
important ecological indicators of vegetation response to climate and 
land use change (Ziska et al., 2019). This highlights the critical need for 
advanced spatiotemporal modeling and real-time pollen forecasting to 
inform allergy prevention, public health strategies, and urban ecological 
planning.

Airborne pollen concentrations are significantly influenced by 
meteorological factors, including temperature, humidity, and wind 
speed and direction (Maya-Manzano et al., 2017). Temperature gener
ally exhibits a positive association with pollen levels, whereas humidity 
and precipitation are typically negatively correlated (Valipour Shokouhi 
et al., 2024a; Rahman et al., 2020; Lo et al., 2021; Khwarahm et al., 
2014; Ritenberga et al., 2018; Tseng et al., 2018). Additionally, remote 
sensing data provide essential information for pollen modelling 
(Schnake-Mahl and Sommers, 2017; Li et al., 2019). Vegetation indices, 
such as normalized difference vegetation index (NDVI), captures vege
tation activity and phenological stages linked to pollen release, while 
land cover and topographic data characterize source habitats and 
dispersal pathways (Valipour Shokouhi et al., 2024a; Lugonja et al., 
2019). These spatially continuous indicators complement ground ob
servations and improve the characterization of airborne pollen 
dynamics.

Many studies have developed predictive models that incorporate 
phenological progress and environmental variables to estimate the 
spatiotemporal distribution of airborne pollen (Valipour Shokouhi et al., 
2024a, 2024b; Lo et al., 2021). While traditional statistical models such 
as multiple linear regression provide interpretability, they often fail to 
capture the complexities of nonlinear relationships between pollen and 
environmental factors (Cotos-Yanez et al., 2004; Hjort et al., 2016). 
Recently, advanced machine learning algorithms such as random forest, 
gradient boosting, and artificial neural networks, have been demon
strated superior predictive capabilities (Valipour Shokouhi et al., 2024b; 
Liu et al., 2022; Puc, 2012; Ouyang et al., 2025a; Ruan et al., 2024), 
particularly when utilizing ensemble methods that integrate multiple 
approaches.

In Europe and North America, several well-established operational 
pollen forecasting systems provide daily or near-real-time predictions 
for major allergenic pollen types. For example, the System for Integrated 
modeLing of Atmospheric coMposition (SILAM) developed by the 
Finnish Meteorological Institute (FMI) and operationalized by the 
Copernicus Atmosphere Monitoring Service (CAMS) deliver regional 
pollen forecasts across Europe using advanced atmospheric composition 
models (System, 2025; Forecasting, 2025). Similarly, in the United 
States, daily pollen forecasts and concentration maps are publicly 
available through platforms such as Pollen.com (Pollen.com, 2025). 
These systems typically integrate real-time meteorological data, vege
tation indices, and process-based or statistical modeling approaches to 
support public health alerts and allergy prevention. However, such 
comprehensive forecasting infrastructure remains largely underdevel
oped across much of Asia, particularly in China. Existing efforts are often 
limited to local-scale studies or short-term monitoring, lacking 
long-term, high-resolution datasets or national coverage. Moreover, few 
systems fully leverage multi-source environmental data and advanced 
modeling techniques.

Beyond forecasting, pollen datasets also serve as ecological in
dicators that reflect vegetation composition, phenology, and climate 
interactions at landscape and national scales. This study aims to develop 
a novel, machine learning framework to estimate daily tree and herba
ceous pollen concentrations across mainland China from 2011 to 2023 
at a 10-km spatial resolution. By integrating diverse environmental data, 
including meteorological, vegetation, geographic, and temporal vari
ables, this study investigates the relationships between key environ
mental factors and pollen concentrations. Ultimately, it seeks to create 
the first long-term, high-resolution daily pollen dataset for China, 
providing a valuable tool for ecological monitoring, landscape 

management, and public health applications.

2. Methods

2.1. Pollen data

Daily airborne pollen concentrations were measured at 27 moni
toring sites established by Beijing Tongren Hospital, covering a diverse 
range of ecological and climatic zones across mainland China (Fig. 1). 
Monitoring was conducted during the active pollen seasons from March 
to October each year between 2019 and 2024. Detailed monitoring pe
riods for each site are provided in Supplementary Table S1.

Pollen sampling employed Durham-type samplers based on the 
gravimetric method, with collection slides replaced every 24 h. 
Although Durham traps are known to have lower sampling efficiency 
compared to volumetric methods such as Hirst-type samplers, they 
remain widely used in China due to their simplicity, cost-effectiveness, 
and the historical continuity of their use. To ensure data consistency 
and reliability, all monitoring sites followed standardized protocols for 
slide preparation, staining, and pollen identification. Slides were stained 
with alkaline fuchsin to enhance pollen grain visibility and examined 
under a light microscope (Olympus BX-51, 200 ×) for manual counting 
and taxonomic classification.

Because gravimetric methods can underestimate atmospheric pollen 
concentrations due to meteorological influences, we additionally con
verted Durham-derived counts to volumetric-equivalent concentrations. 
This conversion was derived from an accuracy evaluation conducted by 
our research team, which compared simultaneous measurements from 
Durham-type samplers and a newly developed volumetric suction 
sampler (Ouyang et al., 2025b). The study demonstrated a strong cor
relation (R2 = 0.7605) and established the following linear conversion 
equation: 

Y = 2.065X − 3.962 

where X represents pollen concentrations collected by the Durham 
sampler (grains/1000 mm2), and Y represents estimated volumetric 
concentrations (grains/m3). This conversion was uniformly applied 
across all sites to improve comparability with volumetric-based mea
surements and reduce uncertainty associated with gravimetric sampling.

Mainland China typically experiences two distinct pollen seasons 
annually. The spring season is primarily characterized by tree pollens, 
while the autumn season is marked by elevated concentrations of 
allergenic herbaceous pollen. In this study, we estimated total pollen 
concentrations for tree and herbaceous pollen, respectively. Tree pollen 
includes taxa such as Cupressaceae (cypress), Salicaceae (willow and 
poplar), Ulmaceae (elm), Betulaceae (birch), Pinaceae (pine), and Ole
aceae (white ash), which predominantly contribute to pollen levels 
during the spring and early summer. In contrast, herbaceous pollen 
mainly consists of taxa from Asteraceae (including both Artemisia and 
non-Artemisia species), Moraceae (genus Humulus), Poaceae (grasses), 
and Chenopodiaceae (goosefoot), which are more abundant in late 
summer and autumn.

2.2. Explanatory variables

The explanatory variables used in this study were derived from at
mospheric reanalysis datasets and satellite remote sensing products. We 
incorporated a range of variables potentially influencing pollen con
centrations, including meteorological variables, vegetation-related var
iables, land use types, spatial and temporal features (Table 1).

Daily meteorological variables, including ambient temperature, 
precipitation, relative humidity, surface pressure, wind speed, and wind 
direction, were extracted for buffers of 1 km, 5 km, and 10 km sur
rounding each pollen monitoring site. Wind speed and direction at 10 m 
were derived from the eastward (U) and northward (V) wind 
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components. To account for the lagged effects of weather on pollen 
emission and dispersion, we collected daily values of each meteorolog
ical variable for the day of monitoring (lag 0) as well as for the preceding 
1–7 days (lags 1–7).

In addition, we incorporated vegetation-related factors, including 
vegetation indices and land use characteristics, to reflect plant growth 
conditions and surrounding land cover. Specifically, we extracted the 
normalized difference vegetation index (NDVI), enhanced vegetation 
index (EVI), and leaf area index (LAI) for both high and low vegetation 
types across the 1 km, 5 km, and 10 km buffer zones. We also calculated 
the proportion of major land use types (e.g., cropland, forest, shrubland, 
grassland, and water) within each buffer zone to estimate their potential 
contributions to local pollen emissions. Spatial features included longi
tude, latitude, and elevation for each monitoring site. Temporal features 
such as day of the year, week of the year, month, and season. In addition, 
we created a binary indicator (1 = peak season, 0 = non-peak season) to 
distinguish periods of high and low pollen activity. The peak season for 
tree pollen was defined as March to June, while for herbaceous pollen, it 
was defined as July to October.

To ensure spatial and temporal alignment across datasets, bilinear 
interpolation was applied to resample meteorological variables and LAI 
data to a uniform spatial resolution of 1 km. Additionally, NDVI and EVI 
data, initially available at a 16-day temporal resolution, were resampled 
to daily values using spatiotemporal interpolation techniques. These 
preprocessing steps were implemented to maintain consistency with 
daily pollen concentration data and to enhance the accuracy of subse
quent model training.

2.3. Statistical methods

In this study, we used ensemble machine learning techniques to 
model the relationship between a comprehensive set of 23 spatiotem
poral variables and daily airborne pollen concentrations. Separate esti
mate models were developed for tree and herbaceous pollen to account 
for their distinct ecological and phenological characteristics.

Prior to model development, we applied natural logarithmic trans
formation with an offset of 1 to daily pollen concentrations to reduce 
right-skewness. Potential outliers were identified using the conventional 
1.5 ×interquartile range (IQR) method, and observations with missing 
values were excluded to ensure consistent model training.

2.4. Model development

For the models, we used two machine learning algorithms: the 
Random Forest Regressor (RFR) and the Gradient Boosting Regressor 
(GBR). The Random Forest Regressor was chosen to capture the complex 
nonlinear relationships between environmental factors and pollen con
centration while effectively reducing the risk of overfitting. The formula 
for the Random Forest Regressor is expressed as: 

ŷ =
1
T
∑T

t=1
ft(x) (1) 

where: ŷ represents the estimated pollen concentration, T is the number 
of trees, and ft(x) denotes the estimation from the t-th tree.

The Gradient Boosting Regressor was used to construct additive 
models by sequentially minimizing the residual errors from preceding 

Fig. 1. Spatial distribution of pollen monitoring stations.
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trees, thereby improving accuracy. Its formulation is as follows: 

ŷ =
∑M

m=1
ηhm(x) (2) 

where ŷ is the final output, M is the number of boosting iterations, η 
is the learning rate, hm(x) is the fitted tree at iteration m.

To enhance model robustness and generalization, we implemented a 
Voting Regressor that combines the outputs of the Random Forest Re
gressor and the Gradient Boosting Regressor by averaging their 
estimations.

2.5. Model optimization

To optimize model performance, we used feature selection and 
hyperparameter tuning. Feature selection combined recursive feature 
elimination with variable importance rankings from the Random Forest 
algorithm to retain only the most informative features. Hyperparameter 
tuning was performed using grid search with 10-fold cross-validation. 
For the Random Forest Regressor, we tested tree counts of 200, 500, 
and 1000; maximum depths of 10, 15, and 20; and minimum samples for 
splitting and leaf nodes set at (5, 10) and (2, 5), respectively. For the 

Gradient Boosting Regressor, we evaluated the number of boosting it
erations (100, 200, 300), learning rates (0.01, 0.1, 0.2), and maximum 
tree depths (3, 5, 7). To prevent overfitting, early stopping was imple
mented by monitoring validation loss during training. Model perfor
mance was evaluated using the coefficient of determination (R²) and 
root mean square error (RMSE).

2.6. Nationwide daily pollen maps

To generate nationwide daily pollen concentration maps, we applied 
the optimized tree and herbaceous pollen models, selected based on 
maximized R² and minimized RMSE from 10-fold cross-validation, to 
gridded environmental variable datasets with a spatial resolution of 
10 km. Environmental variables from March to October for each year 
between 2011 and 2023 were used as inputs to estimate daily pollen 
concentrations across China. Separate raster maps were produced for 
tree and herbaceous pollen, both maintaining a consistent spatial reso
lution of 10 km.

2.7. Sensitivity analyses

To evaluate the robustness of the model and examine its dependence 
on temporal features, we conducted two sensitivity analyses. First, to 
assess the extent to which model performance relied on calendar-based 
temporal features, we re-trained the models after completely excluding 
all temporal variables, including day of the year, week of the year, 
month, and season. Second, to examine the model’s ability to generalize 
across time and support historical reconstruction, we trained the models 
using data from 2020 to 2024 and evaluated their performance on an 
independent dataset from 2019.

3. Results

3.1. Seasonal patterns of pollen

Tree and herbaceous pollen displayed complementary seasonal pat
terns, with tree pollen predominating in the spring and herbaceous 
pollen becoming more prevalent in late summer to early autumn 
(Fig. 2). Tree pollen exhibited an early-season peak, with concentrations 
starting to rise in early March, reaching a sharp maximum in early to 
mid-April, and then gradually declining by June. In contrast, herbaceous 
pollen was sparsely present in early spring but began to rise significantly 
in July, peaking sharply from late August to early September, before 
tapering off by October. These seasonal trends were consistent across all 
monitoring sites except Guangzhou, where herbaceous pollen concen
trations were slightly higher than tree pollen in spring.

3.2. Model evaluation and validation

The models demonstrated high accuracy in estimating daily pollen 
concentrations. For tree pollen, the overall R² reached 0.90 with an 
RMSE of 0.58, while the herbaceous pollen model achieved an R² of 0.89 
and an RMSE of 0.49. Model performance remained robust during peak 
pollen seasons (R² = 0.82–0.88) and non-peak periods (R² = 0.81–0.89) 
(Table 2). Ten-fold cross-validation further confirmed the stability of the 
models, with consistent results across folds (Supplementary Table S2).

Scatter plots of observed versus estimated values showed that most 
estimates closely followed the 1:1 reference line (dashed red), suggest
ing minimal bias across most concentration ranges (Fig. 3). However, 
greater dispersion was observed at higher concentration ranges, with 
both models tending to slightly underestimate extreme values. Daily 
predicted values showed consistent spatiotemporal trends with obser
vations in most cities, offering a more detailed appraisal of model per
formance at the city level (Supplementary Figures S1 and S2).

Table 1 
Summary of input variables and data sources for pollen concentration 
estimation.

Variable Unit Spatial 
resolution

Temporal 
resolution

Temporal 
scope

Data source

Meteorology ​ ​ ​ ​ ​
Temperature ◦C 1 km Daily 2011–2024 ERA5-Land 

Daily 
Aggregated

Relative 
humidity

%

Precipitation mm
Surface 

pressure
kPa

Wind speed m/s
Wind 

direction

◦

Vegetation ​ ​ ​ ​ ​
LAI_low – 1 km Daily 2011–2024 ERA5-Land 

Daily 
Aggregated

LAI_high

NDVI – 1 km 16 days 2011–2024 MODIS/ 
Terra 
Vegetation 
Indices

EVI –

Land use 
type

​ ​ ​ ​ ​

Cropland % 30 m Annual 2011–2024 Annual 
China Land 
Cover 
Dataset (
Yang and 
Huang, 
2024)

Forest
Shrub
Grassland
Water

Spatial ​ ​ ​ ​ ​
Longitude – – – – –
Latitude
Elevation m 1 km – – Shuttle 

Radar 
Topography 
Mission

Temporal ​ ​ ​ ​ ​
Day of the 

year
– – – – –

Week of the 
year

Month
Season
Peak season

Abbreviations: LAI_low = leaf area index for low vegetation; LAI_high = leaf 
area index for high vegetation; NDVI = normalized difference vegetation index; 
EVI = enhanced vegetation index.
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Fig. 2. Daily average pollen concentrations of tree and herbaceous plants at each monitoring site from 2019 to 2024. Note: Data for Guangzhou covers only the first 
pollen season in 2024, and data for Taiyuan, Jinan, Nanchong, and Hangzhou covers only the latter half of the pollen season in 2023.
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3.3. Feature importance of explanatory variables

Feature importance analysis revealed that both tree and herbaceous 
pollen models were primarily driven by temporal variables, with day of 
year and week of year ranking highest (Fig. 4). Day of year alone 
contributed 48.16 % and 25.96 % of the total importance in the tree and 
herbaceous pollen models, respectively. Vegetation-related variables, 
including LAI, NDVI, and EVI within 5–10 km buffers, as well as mete
orological variables such as temperature, relative humidity, and surface 
pressure (including short-term lags), also showed high importance.

Despite these similarities, distinct differences in feature importance 
were observed between the two models. For tree pollen, forest coverage 
within 5 km buffers and temperature with a 7-day lag were the most 
influential vegetation and meteorological variables, indicating that 
stronger source vegetation and cumulative thermal dependencies. In 
contrast, herbaceous pollen concentration was primarily driven by day 
of the year and latitude, suggesting stronger geographic dependence. 
Low vegetation LAI within 10 km and EVI within 5 km were the most 
important vegetation variables for herbaceous pollen, suggesting that 
local vegetation density and greenness play key roles in shaping its 
variation.

3.4. Relationships between key variables and pollen concentration

Tree pollen concentrations peaking around the 90th day of the year 
and declining steadily thereafter (Fig. 5a). Temperature with a 7-day lag 
was negatively associated with tree pollen concentration, particularly 
above 15 ◦C. Vegetation-related effects were modest: tree pollen showed 
a slight increase with higher EVI values. Forest cover within a 5 km 
buffer exhibited only limited and inconsistent influence, with minor 
increases at low levels and little change beyond. Notably, increasing LAI 
of low vegetation within a 10 km buffer was associated with reduced 
tree pollen concentrations.

In contrast, herbaceous pollen remained low until around the 190th 
day of the year, then rose sharply to peak between days 225 and 250, 
aligning with elevated values in the late summer to early autumn weeks 
(Fig. 5b). herbaceous pollen was negatively correlated with latitude 
below 30◦, but positively correlated above 30◦, suggesting differing 
regional dynamics. Higher low-vegetation LAI within a 10 km radius 
was associated with reduced herbaceous pollen levels, whereas EVI 
generally showed a positive association with herbaceous pollen. Surface 
pressure exhibited a threshold response: below 89 kPa, herbaceous 
pollen concentration increased with decreasing pressure, while above 
this threshold, concentrations dropped abruptly and then remained 
nearly constant.

3.5. Nationwide daily pollen concentration maps

Nationwide daily pollen concentrations from March to October 
(2011–2023) were estimated at a 10 km resolution, with spatial patterns 
illustrated using the average monthly pollen concentrations calculated 
from daily predictions during the 2023 pollen season (Fig. 6). Tree 
pollen concentrations were high from March to May, with extensive 
coverage in eastern, northeastern, central, and southwestern China. 

From June to September, concentrations significantly decreased across 
most regions, with a slight resurgence observed in October, primarily in 
the southwestern areas. In contrast, herbaceous pollen concentrations 
remained low from March to June. Beginning in July, concentrations 
increased, reaching widespread high values in August and September, 
particularly in the northern and northwestern regions. By October, 
herbaceous pollen levels had largely diminished.

3.6. Sensitivity analyses

First, after excluding all temporal features, model performance 
remained high, with the R2 values of 0.88 for tree pollen and 0.85 for 
herbaceous pollen, and RMSE values of 0.63 and 0.57, respectively. 
Model performance remained robust during both peak pollen seasons 
(R2 = 0.83–0.85) and non-peak periods (R2 = 0.79–0.84) 
(Supplementary Table S3). Feature importance analysis revealed that 
temperature-related variables were the dominant predictors for tree 
pollen, whereas vegetation-related variables contributed most strongly 
to herbaceous pollen estimation (Supplementary Figure S3). Second, 
models trained on data from 2020 to 2024 and evaluated on the inde
pendent 2019 dataset achieved R2 values of 0.72 for tree pollen and 0.71 
for herbaceous pollen. Estimated pollen concentrations were generally 
consistent with observed values in 2019 (Supplementary Figure S4), 
supporting the model’s capacity to extrapolate across years.

4. Discussion

In this study, we developed and validated machine learning models 
to estimate daily concentrations of tree and herbaceous pollen across 
mainland China at a 10 km resolution. The models achieved high ac
curacy and revealed distinct seasonal and spatial patterns: tree pollen 
peaked in early spring, primarily in eastern, northeastern, central, and 
southwestern regions, while herbaceous pollen was most abundant in 
late summer, especially in northern and northwestern areas of China. 
Seasonal timing emerged as a dominant feature for both pollen types, 
while the associated environmental predictors differed, with tree pollen 
closely associated with source vegetation and temperature, and herba
ceous pollen exhibited stronger correlations with latitude and vegeta
tion index.

Numerous approaches have been developed to estimate airborne 
pollen concentrations. Early studies primarily relied on statistical 
models such as multiple linear regression (Ritenberga et al., 2016), 
generalized additive models (Cotos-Yanez et al., 2004), or time series 
methods (Rojo et al., 2017), which provided interpretable relationships 
but often struggled to capture complex nonlinear interactions between 
environmental factors and pollen levels. Process-based models, 
including phenology-driven and temperature accumulation models 
(Kmenta et al., 2017; Garcia-Mozo et al., 2000), have been used to 
simulate flowering periods and emission timing for specific taxa. How
ever, these models typically require detailed plant physiological data 
and are less scalable for large-scale operational forecasting.

In parallel, mechanistic modeling approaches based on pollen 
emission, dispersion, and deposition processes have been developed and 
operationalized, particularly in Europe and North America (Siljamo 
et al., 2013). These models simulate the entire pollen life cycle by 
incorporating explicit parameterizations of emission based on meteo
rological conditions and phenology, atmospheric transport driven by 
wind fields, and removal through dry and wet deposition (Siljamo et al., 
2013; Zink et al., 2012). Notable examples include SILAM, and 
COSMO-ART (Consortium for Small-scale Modelling-Aerosols and 
Reactive Trace gases) (Vogel et al., 2009), which are directly coupled 
with numerical weather prediction frameworks. Comprehensive air 
quality models like CMAQ (Community Multiscale Air Quality Modeling 
System) can be applied to pollen simulation (Ren et al., 2022). While 
these physics-based models provide valuable insights into large-scale 
pollen transport and interannual variability, they rely on extensive 

Table 2 
Cross-validated performance of the tree and herbaceous pollen models.

Pollen types Time period R2 RMSE

Tree pollen Overall 0.90 0.58
Peak season 0.88 0.63
Non-peak season 0.81 0.35

Herbaceous pollen Overall 0.89 0.49
Peak season 0.82 0.38
Non-peak season 0.89 0.53

Abbreviation: R² = coefficient of determination; RMSE = root mean square 
error.
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high-resolution input data (e.g., detailed pollen source maps, 
species-specific emission potentials, and complex particle-process pa
rameterizations), which can limit their applicability for operational 
forecasting in data-scarce regions.

Recently, machine learning approaches have emerged as a powerful 
alternative for modeling pollen concentrations. Algorithms such as 
random forest, support vector machines (Zhao et al., 2018), and artifi
cial neural networks (Puc, 2012) have shown clear advantages in 
capturing nonlinear relationships and improving model accuracy. Un
like mechanistic models that reproduce underlying processes, machine 
learning methods infer empirical associations directly from observa
tional data, making them particularly suitable for regions with limited 
knowledge of pollen source distributions or species-specific emission 
parameters. Studies conducted in Switzerland have demonstrated that 
machine learning models outperform linear models, with the random 

forest algorithm showing superior spatiotemporal performance and 
achieving R2 values ranging from 0.84 to 0.91 for daily pollen concen
trations6. More recent advancements indicate that ensemble models 
integrating multiple machine learning algorithms can further enhance 
model performance. One such study reported that a model combining six 
machine learning algorithms achieved R2 values of 0.86 and 0.91 for 
birch and grass pollen, respectively (Valipour Shokouhi et al., 2024b). 
Our model similarly used this data-driven method. Rather than explic
itly simulating emission and transport, it learns the complex associations 
between multi-source environmental predictors (meteorological condi
tions, vegetation indices, land use) and observed pollen concentrations. 
This approach enables effective prediction even in data-scarce regions 
and facilitates large-scale applications. Compared with existing studies 
in China, our approach substantially extends spatial coverage and 
temporal continuity while maintaining high predictive skill (Ouyang 

Fig. 3. Observed and estimated pollen concentrations for the tree and herbaceous pollen models. The dashed red line represents the 1:1 reference line. Note: Both 
observed and estimated values are log-transformed daily pollen concentrations.
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et al., 2025a; Li et al., 2025).
Notably, this is the first study to incorporate lagged meteorological 

effects into pollen estimation models at a national scale in China. Pre
vious studies have primarily relied on same-day meteorological condi
tions (Valipour Shokouhi et al., 2024a, 2024b; Ravindra et al., 2022), 
potentially overlooking the delayed responses of pollen production and 
release to environmental drivers. Our results highlight the importance of 
antecedent weather conditions, with lagged temperature (0–7 days) 
identified as a significant feature for both pollen types (Aguilera et al., 
2014).

Seasonal timing variables, including day of year, consistently ranked 
among the most important predictors, reflecting the inherently 
phenology-driven nature of pollen dynamics (Li et al., 2022). However, 
sensitivity analyses demonstrated that even after completely excluding 

all calendar-based temporal variables, model performance remained 
robust, with meteorological and vegetation-related predictors effec
tively reconstructing pollen variability. This finding indicates that 
temporal variables primarily function as parsimonious proxies for 
phenological alignment rather than dominating model structure. The 
distinct predictor importance profiles observed for tree versus herba
ceous pollen further reflect differences in their ecological controls, 
supporting the value of plant-type-specific modeling strategies.

This study has several notable strengths. First, to the best of our 
knowledge, it is the first to develop large-scale models estimating daily 
airborne pollen concentrations for both tree and herbaceous plants 
across mainland China, incorporating multidimensional spatiotemporal 
variables. Previous studies have primarily focused on individual cities, 
with a lack of nationwide assessments. Second, by integrating random 

Fig. 4. Relative importance of variables in the tree and herbaceous pollen estimations. Abbreviations: NDVI = normalized difference vegetation index (5-km radius); 
EVI = enhanced vegetation index (5-km radius); LAI = leaf area index (low/high vegetation, 10-km radius); lag0/lag1/lag2/lag3/lag7 = current day/1-day/2-day/3- 
day/7-day lagged variables.
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Fig. 5. Partial dependence plots of key variables for tree and herbaceous pollen. Abbreviations: EVI = enhanced vegetation index (5-km radius); LAI_low = leaf area 
index for low vegetation (10-km radius); lag0 /lag7 = current day/7-day lagged variables.
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forest and gradient boosting regression, our ensemble model effectively 
captures complex nonlinear relationships and temporal lags in meteo
rological and phenological variables, substantially enhancing the 
model’s accuracy and robustness. Third, the models account for the 
lagged effects of meteorological variables, which are often overlooked in 
prior research but are crucial for understanding pollen dynamics.

Despite the strong overall performance of our model, several sources 
of uncertainty should be considered when interpreting the reconstructed 
pollen fields. First, the historical estimates implicitly rely on the 
assumption that the empirical relationships learned between environ
mental predictors and pollen concentrations remain approximately 
stable over time. Although year-specific meteorological and vegetation 

inputs were used for each reconstructed year, ongoing climate change, 
land-use modification, and urban expansion may induce gradual non- 
stationarity in pollen-environment relationships, particularly in re
gions experiencing rapid environmental transitions (Wei et al., 2021; 
Picornell et al., 2023). Similar concerns regarding temporal trans
ferability have been raised in large-scale environmental exposure re
constructions based on machine learning models (Valipour Shokouhi 
et al., 2024a; Wei et al., 2021). In this study, reduced predictive per
formance in independent hold-out years provides a quantitative indi
cation of uncertainty associated with temporal transferability. As a 
result, reconstructed pollen fields are expected to be more reliable for 
capturing relative spatial contrasts and seasonal variability than for 

Fig. 6. Spatial distribution of average monthly tree and herbaceous pollen concentrations, calculated from daily estimates during the 2023 pollen season.
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representing exact year-specific absolute concentrations, with poten
tially higher uncertainty in earlier periods.

Second, spatial uncertainty arises from the uneven distribution of 
monitoring stations across China and the country’s pronounced climatic 
and ecological heterogeneity. Monitoring sites are concentrated in 
eastern and central regions, whereas western China, characterized by 
complex terrain, arid and high-altitude climates, and distinct vegetation 
regimes, is relatively under-sampled. Predictions in these regions 
therefore rely on spatial extrapolation across climatic zones and 
increasing distances from monitoring locations, which may reduce 
robustness. Previous large-scale environmental modeling studies have 
shown that prediction uncertainty increases with distance to monitors 
and when extrapolating across poorly represented climate regimes 
(Valipour Shokouhi et al., 2024a; Adams-Groom et al., 2017). Conse
quently, pollen estimates for western and high-altitude regions should 
be interpreted with greater caution, particularly regarding absolute 
concentration levels.

Third, additional uncertainty is introduced by the measurement 
framework itself. Pollen observations were collected using Durham-type 
gravimetric samplers, and gravimetric counts were converted to 
volumetric-equivalent concentrations using an empirical calibration 
equation. While this conversion facilitates comparability with interna
tionally used volumetric units, applying a uniform conversion across 
diverse climatic and ecological contexts may introduce spatially het
erogeneous biases. Variations in pollen morphology, deposition veloc
ity, wind conditions, and humidity can all influence gravimetric-to- 
volumetric relationships (Weber, 2003; Suanno et al., 2021). Such 
conversion-related uncertainty is likely to affect absolute concentration 
estimates more strongly than relative spatial or seasonal patterns, which 
are the primary focus of the present analysis.

Finally, the aggregation of pollen into broad tree and herbaceous 
categories introduces a form of structural uncertainty. Dominant aller
genic taxa within each group differ substantially in phenology, climatic 
sensitivity, and allergenic potency, and aggregation may smooth sharp 
peaks associated with highly allergenic species such as Betulaceae or 
Artemisia, potentially underestimating short-term exposure risk (Lo 
et al., 2021; Sofiev et al., 2024). Species-level modeling could improve 
predictive specificity, enhance biological interpretability, and increase 
relevance for clinical and epidemiological applications. However, such 
modeling was not feasible in this study due to limitations in 
species-resolved data availability and spatial continuity. As more 
detailed and long-term taxon-level monitoring data become available, 
future work will prioritize species-specific extensions to further refine 
exposure assessment and health-oriented applications.

The high-resolution, daily pollen concentration fields developed in 
this study provide a valuable resource for public health research and 
practice, particularly in regions lacking routine pollen monitoring. By 
offering spatially continuous exposure estimates, the dataset can support 
epidemiological studies of pollen-related health outcomes, including 
allergic rhinitis, asthma exacerbations, and other environmentally sen
sitive conditions, using time-series or cohort-based designs. In addition, 
the reconstructed historical pollen fields enable assessment of long-term 
and seasonal exposure patterns, facilitating investigations of temporal 
variability and potential links with climate and land-use change. The 
modeling framework also has potential for operational application, as it 
could be coupled with meteorological forecasts to support pollen risk 
mapping and early warning, thereby complementing existing air quality 
management and public health decision-making systems.

5. Conclusion

This study developed and validated machine learning models to es
timate daily concentrations of tree and herbaceous pollen across China, 
leveraging a comprehensive set of meteorological, vegetation, land use 
type, spatial and temporal variables. The models demonstrated strong 
performance in estimating pollen concentrations, with high accuracy 

and robustness across different pollen types. Nationwide daily allergenic 
pollen concentration maps from 2011 to 2023 were generated at a 
10 km spatial resolution, providing a detailed depiction of seasonal and 
regional pollen dynamics. These findings enhance our understanding of 
allergenic airborne pollen behavior in both space and time, offering 
valuable resources for public health planning, allergy prevention, and 
ecological forecasting in the context of changing environmental 
conditions.
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