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A B S T R A C T   

Background: Meningitis can cause devastating epidemics and is susceptible to climate change. It is unclear how 
temperature variability, an indicator of climate change, is associated with meningitis incidence. 
Methods: We used global meningitis incidence data along with meteorological and demographic data over 
1990–2019 to identify the association between temperature variability and meningitis. We also employed future 
(2020–2100) climate data to predict meningitis incidence under different emission levels (SSPs: Shared Socio-
economic Pathways). 
Results: We found that the mean temperature variability increased by almost 3 folds in the past 30 years. The 
largest changes occurred in Australasia, Tropical Latin America, and Central Sub-Saharan Africa. With a loga-
rithmic unit increase in temperature variability, the overall global meningitis risk increases by 4.8 %. Australasia, 
Central Sub-Saharan Africa, and High-income North America are the most at-risk regions. Higher statistical 
differences were identified in males, children, and the elderly population. Compared to high-emission (SSP585) 
scenario, we predicted a median reduction of 85.8 % in meningitis incidence globally under the low-emission 
(SSP126) climate change scenario by 2100. 
Conclusion: Our study provides evidence for temperature variability being in association with meningitis inci-
dence, which suggests that global actions are urgently needed to address climate change and to prevent men-
ingitis occurrence.   

1. Introduction 

Meningitis is an inflammation of the membranes (meninges) 
covering the brain and the spinal cord, usually caused by bacterial, viral, 
fungal, or parasitic infection (Collaborators, 2018; Wright et al., 2021). 
The severity of meningitis alters with the causative organism (Erdem 
et al., 2017). For example, viral meningitis, the most common type of 
this disorder, can occur throughout the year, mostly in summer and 
autumn. It usually affects young children, potentially leading to severe 
complications such as high fever, mental retardation, and even death in 
extreme cases (Kohil et al., 2021). As of 2019, the number of global 
meningitis new cases of all causes was estimated to be 2.51 million, and 

the worldwide incidence rate was 32.4 new cases per 100 k population 
(GBD, 2019). Apart from the tremendous health burden of meningitis on 
mortality and morbidity, this disease also has a severe socioeconomic 
impact on patients’ income and education (Pickering et al., 2018). 

Numerous factors can affect the occurrence of meningitis. Among 
these, climatic variability and seasonality play an essential role in the 
spatiotemporal distribution of the disease. Vectors rely heavily on suit-
able habitats and climatic conditions to propagate (Henne et al., 2018). 
Because of which, meningitis transmission is highly seasonal: occur-
rences have been more prevalent in recent years due to climate change 
(Ayanlade et al., 2020). Studies have identified that climate change is 
likely to increase the incidence of meningitis, as raised temperature 
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might enhance meningococcal defense against human immune killing 
(Loh et al., 2013). A survey on meningitis in Ghana revealed that hot 
season, extreme rainfall, drought, flooding, and dusty conditions could 
affect meningitis outbreaks. In particular, the disease occurs during 
drought, which usually comes with extreme heat and dusty conditions 
(Codjoe and Nabie, 2014). Several similar studies on the meningitis belt 
(a region of Sub-Saharan Africa) also concluded that humidity, dust, and 
rainfall are associated with meningitis epidemics (Cuevas et al., 2007; 
Molesworth et al., 2003). Another study reported that seasonal winds 
were the main climatic driver behind the meningitis belt, and a high 
disease incidence was correlated to dry, windy, and dusty conditions 
(Sultan et al., 2005). Global warming will change climate patterns with 
more intense droughts in some locations and more frequent heavy 
rainfall in other places (Pörtner et al., 2022). 

Previous studies on the association between climate and meningitis 
occurrence focus primarily on the classical endemic areas, i.e., the 
meningitis belt and other highincidence regions (Ayanlade et al., 2020; 
Codjoe and Nabie, 2014; Sultan et al., 2005; Palmgren, 2009; Analysis of 
the Effect of Temperature on Age and Sex Incidence of Cerebro-Spinal 
Meningitis in Funtua Local Government Area and State, 2021; Abdus-
salam et al., 2014; Abdussalam et al., 2014; Yaka et al., 2008). While the 
climate and seasonal changes are of great interest to researchers, very 
little attention has been directed at temperature and climate variability, 
which can be strong indicators of climatic variations and forewarns of 
upcoming extreme weather events (Lenton et al., 2008; Bathiany et al., 
2018). To our knowledge, prior studies using temperature and climatic 
variability as indices for identifying the association with meningitis are 
limited to a single local study area and to a relatively short period of up 
to 10 years, no study has estimated the association between temperature 
variability and meningitis on a global scale and over a long period 
(Buhari, 2011; Adebayo, 2001). Furthermore, few studies have explored 
future meningitis incidence trends at different greenhouse gas emission 
levels and under different climate policies, which can be represented by 
Shared Socioeconomic Pathways (SSPs). These pathways are projected 
scenarios of global socioeconomic changes to 2100. With the severity 
ranked from low to high, SSP126 stands for a scenario where humanity 
chooses a sustainable low carbon way of life, leading to reduced global 
warming by 2100; On the contrary, SSP585 depicts a tougher scenario 
where greenhouse gas emissions continue to rise, causing a higher level 
of global warming; SSP245 and SSP370 are considered as the medium 
stabilization scenarios, representing the middle of the green road. 

Here, we proposed to use temperature variability derived from the 
optimum maximum temperatures of 204 countries/locations over 
1990–2019 to identify the association between temperature variability 
and meningitis occurrence and to quantify the risks faced by each re-
gion. Using multi-model ensemble (MME) meteorological data, a 
method that integrates various climate models’ prediction results, we 
would also project the changes in future temperature variability and 
meningitis incidence rate (2020–2100) under different Shared Socio-
economic Pathways (SSP: 126, 245, 370, and 585). We hypothesized 
that places with elevated temperature variability and high greenhouse 
gas emission level would be at increased risk of meningitis incidence 
compared to those with lower temperature variability and controlled 
emissions. 

2. Methods 

2.1. Data sources 

The Global Burden of Disease (GBD) is one of the most comprehen-
sive studies to date that provides a powerful resource for researchers to 
quantify global health loss due to hundreds of diseases, injuries, and risk 
factors (GBD, 2019). It has epidemiological data from more than 350 
diseases and injuries in 195 countries by sex and age between 1990 and 
2019 (Diseases and Injuries, 2020; Collaborators, 2020). Meningitis was 
categorized into four sub-causes, including N meningitides 

(meningococcal), S pneumonia (pneumococcal), H influenzae type b, and 
other pathogens (bacteria, fungi, viruses, etc.). Incidence attributable to 
meningitis was linked to the GBD cause list with the following Inter-
national Classification of Diseases and Injuries, ninth and tenth Revision 
(ICD-9 and ICD-10) codes: 036–036⋅9/A39–A39⋅9 (meningococcal 
meningitis), 320⋅1/G00⋅1 (pneumococcal meningitis), 320⋅0/G00⋅0 (H 
influenzae type b meningitis), and 047–049/320⋅2–322⋅9 (other men-
ingitis) (Collaborators, 2018). All incidences of four sub-causes were 
grouped into a single value to represent the total meningitis incidence by 
the GBD researchers. Further data collection, processing, analysis, and 
modelling details are available in the GBD 2019 publication (Collabo-
rators, 2020). 

TerraClimate is a global gridded database of climate variables at a 
monthly temporal resolution of ~ 4 km from 1958 to the present 
(Abatzoglou et al., 2018; Zhao et al, 2022; Lobell et al., 2022). In 
addition to providing first-order climate variables such as maximum 
temperature, minimum temperature, precipitation accumulation, and 
wind speed, TerraClimate also offers derived climate variables, 
including soil moisture, snow water equivalent, runoff, etc. 

Our study used the sociodemographic index (SDI), which represents 
the country’s average years of schooling, income per capita, and fertility 
rate in females under 25 years old (Diseases and Injuries, 2020). Based 
on the geographical distribution, cultural characteristics, and local 
conventions, 204 GBD countries/locations were categorized into 21 
GBD geographical regions (Supplementary Table 2). 

Utilizing shapefiles of GBD country’s first-level administrative areas, 
we extracted the primary climate data (maximum temperature) and 
other meteorological risk factors (soil moisture, precipitation, and wind 
speed) from the TerraClimate raster data. Because the GBD only pro-
vided the annual estimates, we calculated each country’s annual esti-
mates of the climatic predictors. The top 4 highest monthly 
temperatures of each year were averaged as the maximum temperature 
for that year, accounting for seasonal and geographical differences 
(Sultan et al., 2005; Ma et al., 2021). Twelve months of soil moisture, 
precipitation, and wind speed measurements were averaged to represent 
their annual values. Meningitis incidence rate data of 204 countries/ 
locations, stratified by sex and age, were sourced from the GBD data-
base. The SDI is a time-varying indicator, i.e., one country may have had 
a middle SDI in 1990 but a high SDI in 2019. The latest 2019 SDI values, 
for their better representativeness, were adopted in this study. 

We used a similar approach as mentioned above (masking using 
shapefiles of GBD countries) to extract maximum temperature and 
precipitation from The Coupled Model Intercomparison Project Phase 6 
(CMIP6) data, which provide past, present, and future climate data in a 
multimodal framework (Eyring et al., 2016; Petrie et al., 2021). Five 
widely-employed representative climate models (ACCESS-CM2, Can-
ESM5, IPSL-CM6A-LR, MIROC6, UKESM1-0-LL) were selected, down-
scaled, and bias-corrected with WorldClim v2.1, a widely used historical 
climate dataset over 1970–2000, as the baseline climate (Fick and Hij-
mans, 2017). Monthly values of maximum, minimum temperature, and 
precipitation were generated for four SSPs (126, 245, 370, and 585). 
These values were averaged over 20-year periods (2021–2040, 
2041–2060, 2061–2080, and 2081–2100). 

2.2. Statistical method 

We adopted a three-step analysis strategy. First, generalized linear 
regression models adjusted for year, age, and sex were built to estimate 
the dose–response relationship between maximum temperature and 
incidence rate of meningitis for each GBD country. The maximum 
temperature with the lowest incidence rate of meningitis would be 
identified as the “ideal” baseline temperature, at which the disease is 
most unlikely to occur in the population. Using this location-specific 
baseline temperature value, the absolute maximum temperature differ-
ences from the “ideal” temperature of each country from 1990 to 2019 
were calculated as the maximum temperature variability value. 
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For the second step, we used a generalized linear regression model to 
preliminarily screen the associations between meningitis incidence and 
all climate variables respectively. Those with statistical differences were 
included in the following analysis. Next, we began our generalized ad-
ditive regression modeling with only meningitis incidence and temper-
ature variability, which were found to be the most significant climate 
risk factor of all the variables. By using the likelihood-ratio test, we took 
a forward stepwise feature selection technique to compare models, as 
well as to check and incorporate any variable that had statistical dif-
ference. We selected important climate variables and chose the proper 
degree of freedom for each spline term. In the fully adjusted model, we 
adjusted for relevant demographic, socioeconomic, and meteorological 
covariances such as sex, age, SDI, soil moisture, precipitation, and wind 
speed. A natural cubic spline was applied to soil moisture and precipi-
tation with a freedom of 3. These regions would allow a more 
straightforward generalization of places most susceptible to increased 
extreme temperature variability. Subgroup and sensitivity analyses by 
age, sex, and SDI stratification were conducted according to the poten-
tial risk factors. 

In the third prediction step, we resorted to a common yet effective 
approach called the multi-model ensemble (MME) to minimize future 
climate models’ uncertainties and to improve prediction accuracy. It is a 
technique that integrates multiple models’ prediction results as an 
ensemble. Studies on precipitation projections over China have reported 
that the bias of the MME was much lower than that of individual CMIP6 
models (Tian et al., 2021). We believe that this finding, an ensemble 
performs better than a single model alone, also applied to MME in other 
regions of the world. To fully exploit the advantages of each model as 
well as to minimize model structural errors and parameterization un-
certainties as much as possible, our improved MME approach was to 
calculate the 10th, 50th (ensemble median), and 90th percentile for all 
models’ prediction values as the range of changes. Then, repeat for all 
SSP scenarios over 2020–2100. To ensure a smooth transition from past 
data to future projection, we also computed meteorological data from 
2000 to 2020. We assumed that the optimum temperature at which the 
incidence rate was the lowest would remain the same in the future, and 
the demographic composition of the study population would change 
barely. Relying on this assumption, location-specific data from 2000 to 
2020 were used as the baseline to calculate the maximum temperature 
variability over 2020–2100. These data and other CMIP6 future 

meteorological data were fed into the model we developed in step two to 
generate projections and their ranges of predicted changes under four 
SSP scenarios. 

3. Results 

Between 1990 and 2019, the global mean incidence rate per 100 k 
population was 46.2, ranging from 5.9 in High-income North America to 
218.5 in Western Sub-Saharan Africa (Table 1). The global mean 
maximum temperature is 29.4 ℃, with the lowest at 11.8 ℃ in High- 
income North America and the highest at 37.0 ℃ in North Africa and 
Middle East. The global average soil moisture, precipitation, and wind 
speed are 66.7 mm (range between 9.3 and 147 mm), 103.8 mm (17 to 
228.8 mm), and 2.9 m/s (1.8 to 4.1 m/s), respectively. 

From 1990 to 2019, the temperature variability reached a small peak 
of approximately 0.68 ℃ in the mid-1990 s. It started to decrease to 0.62 
℃ in the mid-2000 s and continued to fluctuate until 2010 when it then 
increased gradually again (Fig. 1A). We found that the changes in 
temperature variability varied considerably across different countries 
and regions. Over the last 30 years, the global value has increased by 
approximately three times. Australasia has the highest increase in 
temperature variability by 22.16-fold, followed by Tropical Latin 
America, which increased by 12.91-fold, and Central Sub-Saharan Af-
rica, which increased by 10.99-fold (Fig. 1B). Based on the average 
temperature variability over 1990 to 2019, we observed that certain 
countries and regions have a relatively higher temperature variability 
between 0.86 ℃ and 1.70 ℃ (Fig. 1C). There is a clear pattern of the 
meningitis belt that spans from Western Sub-Saharan Africa to Eastern 
Sub-Saharan Africa. The incidence rates experienced in the “belt” are 
significantly higher than those in other parts of the world. The incidence 
rates in Europe and the Americas both remain relatively low, while 
sporadically, the incidence can be slightly high in Central Asia and 
South/Southeast Asia. The incidence rates do not always correspond to 
the countries’ mean temperature variability (Fig. 1C). 

In the preliminary association screening between meningitis inci-
dence and climate variables, temperature variability, precipitation, and 
wind speed showed high statistical differences, except for soil moisture 
(Supplementary Table 1). Among all significant factors, temperature 
variability demonstrated the most notable effect (1.04, 95 % CI: 
1.03–1.04, p < 0.001) on meningitis incidence, compared to that of 

Table 1 
The characteristics of meningitis incidence and climatic factors from 1990 to 2019 by GBD region.  

Regions Incidence rate Max temperature (◦C) Soil moisture (mm) Precipitation (mm) Wind speed (m/s) 

Global 46.2 (9.8) 29.4 (6.4) 66.7 (62.2) 103.8 (75.6) 2.9 (1.1) 
East Asia 9.1 (5.3) 25.6 (1.7) 47.4 (14.4) 124.4 (73.5) 3.5 (1.1) 
Central Asia 42 (10.6) 25.9 (5.5) 22.1 (17.3) 35.6 (23.8) 2.7 (1) 
South Asia 69.2 (20.1) 29.0 (6.2) 85.1 (48.7) 102.4 (53) 4.0 (1.4) 
Southeast Asia 29.9 (9.3) 31.1 (1.4) 134.6 (77.5) 168.9 (46.1) 2.8 (1.3) 
Highincome Asia Pacific 19 (3.5) 28.0 (3.8) 53.4 (18.3) 181.8 (88.9) 3.6 (1.3) 
Oceania 67.7 (12.1) 30.4 (1) 46.8 (21.6) 228.8 (79.1) 2.9 (0.7) 
Australasia 14.6 (3.1) 27.1 (7.4) 44.8 (21.7) 88.3 (51) 1.8 (0.2) 
Andean Latin America 11.3 (4.1) 27.1 (1.5) 86.3 (15.6) 135.4 (41.9) 3.6 (1.1) 
Tropical Latin America 34.8 (7.8) 32.3 (1.2) 86.3 (62.5) 118.0 (28.1) 4.1 (0.5) 
Central Latin America 12.5 (5.5) 31.1 (1.1) 147.3 (48.6) 171.9 (53.3) 3.0 (1) 
Southern Latin America 14.6 (4.5) 24.7 (5) 36.4 (17.6) 82.1 (29.3) 3.2 (1.6) 
Caribbean 28.9 (6.3) 31.1 (0.9) 85.0 (80.6) 140.5 (37.1) 2.9 (0.8) 
Highincome North America 5.9 (2.1) 11.8 (11.8) 33.2 (12.7) 48.4 (8.3) 3.9 (1) 
Central Europe 11.9 (3.2) 24.5 (1.8) 62.0 (20.6) 70.8 (25.1) 3.3 (1.1) 
Western Europe 12.2 (3) 22.4 (6.3) 53.9 (23.9) 72.1 (23.6) 3.0 (1.2) 
Eastern Europe 20.6 (3.7) 21.5 (2.9) 60.3 (22) 50.2 (9.2) 2.1 (0.7) 
North Africa and Middle East 30.4 (7) 37.0 (4.3) 9.3 (16.5) 17.0 (16.6) 2.8 (1) 
Western Sub-Saharan Africa 218.5 (56.4) 35.6 (3.7) 105.2 (93.8) 100.0 (70.3) 2.8 (1) 
Eastern Sub-Saharan Africa 165.7 (41.4) 31.9 (3.4) 57.4 (40.6) 77.6 (38.4) 2.3 (0.6) 
Southern Sub-Saharan Africa 55.7 (6.5) 30.0 (3.3) 11.9 (12) 45.1 (17.8) 2.9 (1.1) 
Central Sub-Saharan Africa 151.7 (33.8) 31.1 (1.7) 119.5 (40.6) 135.4 (33.1) 3.1 (1.2) 

Region-specific incidence rate values were sourced from the GBD database, and the other values were calculated as the average (SD) of 1990 to 2019 using Terra-
Climate meteorological annual data. The incidence rate is the number of new cases per 100 k population. The maximum temperature was the average of the hottest 4 
months of the year; soil moisture, precipitation, and wind speed were the annual means. 
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precipitation (0.99, 95 % CI: 0.99–0.99, p < 0.001) and wind speed 
(1.02, 95 % CI: 1.02–1.02, p < 0.001). Wind speed, as we assumed that 
can heavily affect meningitis incidence, was found to have a strong as-
sociation, but the effect was only about half compared to that of tem-
perature variability. Precipitation, on the other hand, was identified to 
be a protective factor. We also noticed that despite soil moisture 
showing the negligible statistical difference, including it in the final 
model still improved the model’s explanatory power. We could now 
preliminarily confirm and consider temperature variability as the main 
risk factor compared to other climate variables. 

In the fully adjusted model, we found that for each logarithmic unit 
increase in temperature variability, the risk of meningitis increased by 
5.0 % (OR, 1.05; 95 % CI: 1.05–1.05) globally (Table 2). For each log-
arithmic unit increase in temperature variability, the risks of meningitis 

for Australasia, High-income North America, and Central Sub-Saharan 
Africa were 20 % (OR, 1.20; 95 % CI: 1.19–1.22), 16 % (OR, 1.16; 95 
% CI: 1.14–1.18), and 14 % (OR, 1.14; 95 % CI: 1.12–1.16), respectively. 
We did not find an association in Southern Latin America, North Africa 
and Middle East, Eastern Sub-Saharan Africa, or Southern Sub-Saharan 
Africa. Increased temperature variability is a protective factor for Cen-
tral Asia (OR, 0.96; 95 % CI: 0.95–0.98) and Oceania (OR, 0.98; 95 % CI: 
0.97–0.99). We also observed significant associations ranging from 3 % 
in South Asia (OR, 1.03; 95 % CI: 1.01–1.05) and Eastern Europe (OR, 
1.03; 95 % CI: 1.01–1.05) to 8 % in Tropical Latin America (OR, 1.08; 95 
% CI: 1.06–1.10) and Western Europe (OR, 1.08; 95 % CI: 1.06–1.09). 

We found that sex and age may be modifiers of the effect of tem-
perature variability on the risk of meningitis. For each logarithmic unit 
increase in temperature variability, males had an increased risk of 5 % 

Fig. 1. Changes in global, regional, and local mean temperature variability and the incidence rate of meningitis from 1990 to 2019. (A) Temporal changes in average 
temperature variability (light blue line on the main plot), long-term trends for each interval (1990 s, 2000 s, 2010 s) of the mean temperature variability (black 
dashed line) using GLM (generalized linear model), and smoothed average temperature variability with its 95 % confidence interval (dark blue line and the gray 
shading on the main plot) using LOESS (Locally Weighted Linear Regression); time-series of mean annual maximum temperature over 1990–2019 (blue line with gray 
shading on the side plot). (B) Regional temperature variability changes compared to 1990 in descending order, with each color scale representing the magnitude of 
changes: red for increases greater than 10, yellow for increases greater than 2 and<5, blue for increases between 0 and 2, and gray for decreases between − 1 and 0. 
(C) Global map of local mean temperature variability over 1990–2019 with 5 intervals ranging from 0.14 to 1.70 ℃ and color-scaled dots showing the severity of the 
local mean incidence rate (ranging from 5.93 to 419.78 new cases per 100 k population) of each country over 1990–2019. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.) 
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(OR, 1.05; 95 % CI: 1.04–1.05), while females had a decreased risk of 1 
% (OR, 0.99; 95 % CI: 0.98–0.99). For stratified age groups, we noticed 
that children and elderly adults had higher risks than mid-aged adults, 
with an OR of 1.10 (95 % CI: 1.09–1.12) for the 1- to 4-year-old age 
group and 1.02 (95 % CI: 1.01–1.03) for the 75- to 79-year-old age 
group. This study did not find any difference between the SDI groups 
(Fig. 2). 

Under all greenhouse gas emission scenarios, future changes in 
temperature variability would increase linearly to approximately 2040 
and diverge according to different scenarios. We found that the lowest 
emission pathway, SSP126, has the most modest increase in temperature 
variability. Along this pathway, temperature variability increases to 
2040 and peaks around the mid-2070 s, reaching a median total increase 
of below 2.5-fold (CI: 1.4–2.9 folds). From the 2070 s onwards, the 
temperature variability level of SSP126 remains at a low and stable level 
of about 2.2 folds (CI: 1.2–2.7 folds). In comparison, SSP370 and SSP585 
increase at a much faster rate. The former reaches the highest point of 
7.5-fold (CI: 4.5–9.0 folds) by 2100, whereas SSP585, the highest 
emission counterpart, has the most significant increase in temperature 
variability, with a substantial increase of close to 10-fold (CI: 7.0–11.5 
folds) by the end of the century (Fig. 3A). The changes in future inci-
dence rates shared a similar pattern of temperature variability for the 
four future emission scenarios. Under SSP126, because of the stricter 
control of future greenhouse gas emissions, the meningitis incidence 
rate will increase by 25 % (CI: 15 %-35 %) until the 2040 s at a gradually 
slower pace of change and will begin declining past the 2070 s. How-
ever, in contrast to mild changes in the SSP126 scenario, the higher 
greenhouse gas emission level of the SSP585 scenario would experience 
a worsened situation starting from the 2060 s, as the increase in 

Table 2 
Association of climate factors with meningitis incidence rate from 1990 to 2019 
by GBD region.  

Regions OR (95 % CI) P value 

Global 1.05 (1.05, 1.05) <0.001 
East Asia Ref Ref 
Central Asia 0.96 (0.95, 0.98) <0.001 
South Asia 1.03 (1.01, 1.05) <0.001 
Southeast Asia 1.05 (1.03, 1.06) <0.001 
High-income Asia Pacific 1.06 (1.04, 1.08) <0.001 
Oceania 0.98 (0.97, 0.99) 0.01 
Australasia 1.20 (1.18, 1.22) <0.001 
Andean Latin America 1.07 (1.05, 1.09) <0.001 
Tropical Latin America 1.08 (1.06, 1.10) <0.001 
Central Latin America 1.04 (1.02, 1.05) <0.001 
Southern Latin America 1.01 (0.99, 1.03) 0.38 
Caribbean 1.06 (1.05, 1.08) <0.001 
High-income North America 1.16 (1.14, 1.18) <0.001 
Central Europe 1.05 (1.03, 1.06) <0.001 
Western Europe 1.08 (1.06, 1.09) <0.001 
Eastern Europe 1.03 (1.01, 1.05) <0.001 
North Africa and Middle East 1.00 (0.99, 1.02) 0.63 
Western Sub-Saharan Africa 1.03 (1.02, 1.05) <0.001 
Eastern Sub-Saharan Africa 1.01 (0.99, 1.02) 0.34 
Southern Sub-Saharan Africa 1.00 (0.99, 1.02) 0.66 
Central Sub-Saharan Africa 1.14 (1.12, 1.16) <0.001 

East Asia was chosen as the reference because it has the largest population and 
mild changes in temperature variability compared to all other regions. 
Maximum temperature, year, sex, age, region, soil moisture, precipitation, and 
wind speed were adjusted for the final model. 

Fig. 2. Subgroup analysis of covariates vs temperature variability. Models were adjusted for year, sex, age, region, soil moisture, precipitation, wind speed, and the 
interaction term between temperature variability and the respective reference subgroups. 
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meningitis incidence of SSP585 would experience a substantially faster 
rate of change, resulting in a final rise of well over 180 % (CI: 100 %-290 
%) by 2100 (Fig. 3B). The median incidence rate of SSP126 is predicted 
to be only 25.8 by 2100 and that of SSP585 will be 182.0 by 2100. The 
SSP126 scenario would see a median of 85.8 % reduction compared to 
the SSP585 scenario by 2100. 

4. Discussion 

We found that the incidence of meningitis is associated with tem-
perature variability, and the associations were more announced in 
males, children, and the elderly population. Temperature variability 
derived from maximum temperature is crucial to evaluate the severity 
and frequency of climate change, especially extreme weather events 
such as extended droughts and heavy precipitation. The epidemiology of 
meningitis is closely related to climatic factors such as air humidity, 
rainfall, wind, and dust. Our findings agreed with previous studies on 
the meningitis belt that countries within the region, particularly much of 
Central and Western Sub-Saharan Africa, continue to have a high burden 
of meningitis (Collaborators, 2018; Codjoe and Nabie, 2014; Cuevas 
et al., 2007). We also validated that these regions are at the highest risk 
for meningitis affected by increasing temperature variability. Several 

other new areas vulnerable to changes in temperature variability have 
been identified: Australasia and High-income North America. The 
United States and Australia have suffered from wildfires in recent years. 
According to a study on wildfires, human health, and climate change, 
these three factors are closely connected. Climate change can lead to 
rainfall anomalies, strong winds, increased lightning strikes, and high 
temperatures, thus leading to wildfires and longer wildfire seasons and 
producing more ambient air pollution (Xu et al., 2020). These climate 
change-induced meteorological conditions are ideal for meningitis 
outbreak, which requires hot, dry, and windy weather (Palmgren, 
2009). Fine particulate matter and other toxic air pollutants, such as 
carbon monoxide, ozone, nitrogen dioxide, and hydrogen cyanide, from 
wildfire smoke can significantly threaten human health. In addition, the 
high temperature that usually comes with wildfires and oxidant gases 
can increase the health risks of wildfire particulate matter (Shaposhni-
kov et al., 2014; Lavigne et al., 2018). Exposure to such air pollutants 
can lead to increased asthma, chronic obstructive pulmonary disease, 
and respiratory infection (Reid et al., 2016; Black et al., 2017). Other 
studies have also suggested that dry, windy, and dusty air conditions can 
injure the immune barriers of the upper respiratory tract mucosa and 
nasal cavity, thus facilitating meningitis infection (van Deuren et al., 
2000; Moore, 1992). For example, N. meningitidis can more easily 

Fig. 3. Multi-model ensemble (MME) projections of future increases in (A) temperature variability and (B) meningitis incidence compared to the base year 2020 
under different Shared Socioeconomic Pathway (SSP) scenarios: SSP126, SSP245, SSP370, and SSP585. Solid curves represent the MME median, and the ranges of 
each model fall within the 10th and 90th percentile. 
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penetrate damaged mucosal membranes through the bloodstream and 
the meninges. To some extent, we know that this finding of increased 
meningitis risk is counterintuitive because Australia had the lowest 
incidence of 0.5 cases per 100,000 population (Collaborators, 2018) and 
a similar number of 0.2–4 per 100,000 in the USA (Harrison et al., 
2009). However, this discrepancy underscores the importance of proper 
public health measures in containing the disease outbreak. 

While meningitis typically ceases its occurrence as the wet season 
begins or as rainfall increases (Greenwood et al., 1984), certain at-risk 
regions do not fit this pattern. For example, Tropical Latin America 
and Southeast and South Asia feature a hot but humid climate. However, 
if temperature variability increases, these regions have a relatively high 
increase in meningitis risk. One similarity these places share is that they 
all have low to middle SDIs, which may reflect the lower effectiveness of 
their healthcare system and the lower extent of vaccination. Moreover, 
Australasia and High-income North America, which have high SDIs in 
comparison, although being found to have a high susceptibility to 
meningitis risk, only experience a low incidence rate, which to a certain 
degree reasserts the crucial role of proper public health prevention and 
intervention. 

Depending on the future greenhouse gas emissions level, the Shared 
Socioeconomic Pathways are divided into four scenarios from low to 
high: SSP126, SSP245, SSP370, and SSP585. The lowest emission sce-
nario, SSP126, where strict and proper actions are taken to address 
climate change, is the most favorable regarding acceptable mild in-
creases in temperature variability and meningitis incidence. Based on 
the projections, both metrics would cease to increase in the mid-century 
and remain at a stable and relatively low level. At the same time, the 
highest emission scenario, SSP585, is projected to cause a substantial 
increase in temperature variability and the meningitis incidence rate. 
This distinct contrast again emphasizes the importance and urgency of 
global actions to address climate change. 

Compared to other studies on meningitis, this is the first to identify 
and quantify meningitis risk associated with climate change-induced 
temperature variability on a global scale. Previous studies were con-
strained to the classical epidemic areas near the meningitis belt and with 
contiguous high incidence regions (Ayanlade et al., 2020; Codjoe and 
Nabie, 2014; Sultan et al., 2005; Palmgren, 2009; Analysis of the Effect 
of Temperature on Age and Sex Incidence of Cerebro-Spinal Meningitis 
in Funtua Local Government Area and State, 2021; Abdussalam et al., 
2014; Abdussalam et al., 2014; Yaka et al., 2008). Additionally, while 
most research has focused more on climate and seasonal changes, 
limited attention has been directed at temperature variability, which can 
be a solid indicator, predictor, and risk factor for climatic variations 
(Lenton et al., 2008; Bathiany et al., 2018). Furthermore, prior studies 
using temperature and climatic variability were restricted to a small 
sample of a single country or to a short period of 10 years (Buhari, 2011; 
Adebayo, 2001). From a global perspective, our study validated regions 
that are traditionally at risk and discovered new areas that are also at 
risk and were overlooked in the past. By identifying and prioritizing 
these vulnerable regions and guiding proper prevention and interven-
tion through public health measures, our work can facilitate actions in 
the Defeating Meningitis by 2030 Global Roadmap. 

There are also limitations to our research, as it is heavily based on 
GBD disease data and future projection data. The less granular yearly 
data of GBD cannot reflect changes within each year and is unable to be 
used for fully leveraging the high temporal resolution of TerraClimate 
monthly data. Typically, there is a lagged effect of environmental 
exposure and an incubation period on meningococcal occurrence among 
the population. However, due to the lack of fine temporal epidemiologic 
data, we could not use a model that can consider this lagged effect. 
Moreover, GBD data only provide a generalized leading cause of men-
ingitis instead of exact causes, such as viral, bacterial, and parasitic 
causes. This limits the identification of region- and location-specific 
causes of meningitis and hinders further exploration of the underlying 
incidence mechanism. 

Furthermore, the GBD dataset provides most countries’ data at a high 
administrative level, i.e., lacking fine data on provinces, states, and 
counties. For instance, China, although it has more than a handful of 
provinces, only has one incidence value per year for the entire country. 
Additionally, the effects of global immunization introduced around the 
2010 s can barely be observed due to the lack of granular disease data. 
Additionally, GBD data are estimates generated based on a standardized 
Bayesian regression tool, which means uncertainties may occur. Coun-
tries with limited data sources typically have a wider confidence inter-
val, indicating greater uncertainties in the estimates. It is worth noting 
that some countries, especially those in Africa, have insufficient primary 
data for diseases. Therefore, incidence estimates of various diseases, 
including meningitis, contain modelling results for the cause-specific 
model derived from data from other countries. Our future prediction 
results were heavily dependent on the assumption that the optimum 
maximum temperature for humans and the population’s demographics 
would remain the same in the future, which could introduce some un-
certainties. During the analysis of multiple CMIP6 climate models, we 
noticed minor disparities between each model, but these disparities 
should not be entirely treated as errors because no “best” meteorological 
model exists. In fact, the uncertainties in each model should be 
considered a unique and complicated mathematical representation of 
the climate system. Thus, employing the multi-model ensemble tech-
nique instead of the individual model alone can reduce bias to the 
greatest extent. 

5. Conclusion 

In this global-scale ecological study, we identified a strong associa-
tion between temperature variability and the meningitis incidence rate. 
In addition, we recognized that Australasia, Central Sub-Saharan Africa, 
and High-income North America are most susceptible to meningitis risks 
with increased temperature variability. We also revealed that different 
Shared Socioeconomic Pathways could lead to drastically different 
consequences for both temperature variability and meningitis incidence 
rate. These results suggest that to achieve the WHO Defeating Meningitis 
by 2030 Global Roadmap, more urgent actions should be taken to 
address climate change as well as the meningitis risk posed by climate 
change. 
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