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A B S T R A C T   

Background: In 2022, SARS-CoV-2 Omicron variants circulated globally, generating concerns about increased 
transmissibility and immune escape. Hong Kong, having an infection-naive population with a moderate 2-dose 
vaccine coverage (63% by the end of 2021), experienced a COVID-19 epidemic largely seeded by Omicron 
BA.2 variants that led to the greatest outbreak in the region to date. Little remains known about the protection of 
commonly-administered vaccines against transmission of Omicron BA.2 variants. 
Methods: In this retrospective cohort study, we identified 17 535 laboratory-confirmed COVID-19 cases using 
contact tracing information during the Omicron-predominant period between January and June 2022 in Hong 
Kong. Demographic characteristics, time from positive test result to case reporting, isolation, or hospital 
admission, as well as contact tracing history and contact setting were extracted. Transmission pairs were 
reconstructed through suspected epidemiological links according to contact tracing history, and the number of 
secondary cases was determined for each index case as a measurement for risk of transmission. The effectiveness 
of mRNA vaccine (BNT162b2) and inactivated vaccine (Sinovac) against transmission of BA.2 variants was 
estimated using zero-inflated negative binomial regression models. 
Results: Vaccine effectiveness against transmission for patients who received the 2-dose BNT162b2 vaccine was 
estimated at 56.2% (95% CI: 14.5, 77.6), 30.6% (95% CI: 13.0, 44.6), and 21.3% (95% CI: 2.9, 36.2) on 15 – 90, 
91 – 180, and 181 – 270 days after vaccination, respectively, showing a significant decrease over time. For 3-dose 
vaccines, vaccine effectiveness estimates were 41.0% (95% CI: 11.3, 60.7) and 41.9% (95% CI: 6.1, 64.0) on 15 – 
180 days after booster doses of Sinovac and BNT162b2, respectively. Although significant vaccine effectiveness 
was detected in household settings, no evidence of such protective association was detected in non-household 
settings for either Sinovac or BNT162b2. 
Conclusion: Moderate and significant protection against Omicron BA.2 variants’ transmission was found for 2 and 
3 doses of Sinovac or BNT162b2 vaccines. Although protection by 2-dose BNT162b2 may evidently wane with 
time, protection could be restored by the booster dose. Here, we highlight the importance of continuously 
evaluating vaccine effectiveness against transmission for emerging SARS-CoV-2 variants.   

1. Introduction 

A challenge in COVID-19 pandemic control is the continuous 

emergence of various genetic variants of SARS-CoV-2 posing a threat to 
public health [1]. In November 2021, the SARS-CoV-2 Omicron vari-
ants, i.e., B.1.1.529 lineage (PANGO), was first reported to World Health 
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Organization (WHO) in South Africa [2], and was recognized as a 
variant of concern (VoC). The global circulation of Omicron variants was 
considered to be an outcome of an increase in transmissibility [3] and 
immune escape associated with novel genetic mutations [4–6]. Owing to 
disease elimination strategy, COVID-19 outbreaks in Hong Kong were 
kept under control with a low incidence rate until December 2021 [7]. 
Then, a large-scale community outbreak seeded by Omicron BA.2 
variant occurred in early January, this fifth wave peaked with a daily 
incidence of over 50 000 laboratory-confirmed cases in early March, and 
subsided in May 2022 [8]. While public health and social measures 
including active contact tracing, case isolation, and temporary treat-
ment facilities were tightened in the early phase of the fifth wave, the 
high number of cases overwhelmed the public health system and dis-
rupted local healthcare. 

Besides non-pharmaceutical interventions, mass vaccination was 
prioritized. Globally, over 12 billion doses of vaccine were administered 
by July 2022. Although an increasing number of studies have found that 
vaccines reduce risk of infection by and developing severe clinical out-
comes from Omicron variants [6,9,10], few studies have evaluated 
vaccine effectiveness (VE) against risk of transmission of Omicron var-
iants among different demographic groups. A US-based observational 
study found a lower household transmission rate for index cases of 
Omicron with 2- or 3-dose of vaccine compared to non-vaccinated index 
cases; a similar reduction in attack rate was detected among index cases 
with previous SARS-CoV-2 infection versus those without [11]. A sys-
tematic review and meta-analysis showed that full vaccination led to a 
reduction in both infectiousness of index cases and susceptibility to 
Omicron infection [12]. A Spanish study of household contacts of 
COVID-19 index cases found a household attack rate of 80.9% during the 
Omicron-dominant period compared with 58.2% during the 
Delta-dominant period, but an insignificant association between vacci-
nation status (71.8% received BNT162b2) and attack rate during 
Omicron-dominant period [13]. Another Israeli study assessed VE 
against infectiousness after confirmed SARS-CoV-2 infection with Delta 
variants, and found no evident protection for BNT162b2 in the house-
hold setting [14]. In contrast, a cohort study in England found moderate 
but significant VE of BNT162b2 and ChAdOx1 nCoV-19 against trans-
mission of Alpha and Delta variants [15]. Similarly, a Chinese cohort 
study reported a moderate and significant VE of 48.5% for 3-dose 
BBIBP-CorV within 15–90 days against Omicron BA.5 transmission, 
but no evident protection was detected after 90 days [16]. Evaluating 
the real-world effectiveness of different vaccines against Omicron vari-
ants’ transmission is important given the continued global circulation of 
Omicron variants and their genetic decedents. 

In Hong Kong, a COVID-19 vaccination program was launched in 
February 2021 for both Pfizer mRNA BNT162b2 vaccine (Comirnaty, 
Fosun Pharma-BioNTech) and Sinovac inactivated vaccine (CoronaVac). 
A subsequent booster vaccine program (i.e., third dose) was initialized 
first for priority groups (mostly the elderly) in November 2021 and then 
for the general population aged 18 years and above on January 1, 2022, 
given 6 months or more after the second dose [17]. While mRNA vac-
cines have been widely-used as the main type of COVID-19 vaccines in 
developed countries, inactivated vaccines have been mainly used in 
developing countries; it is thus important to evaluate the protective 
performance of both. 

With a largely infection-naive (i.e., < 0.2% previously infected) 
general population in Hong Kong under the moderate coverage of 2-dose 
vaccines (and in the near future, also for 3-dose vaccines), we assessed 
VE and waning protection of different doses of BNT162b2 and Sinovac 
against the transmission of SARS-CoV-2 Omicron BA.2 variants. 

2. Methods 

2.1. Study design, setting, participants, and data 

We performed a retrospective cohort study based on COVID-19 cases 

in Hong Kong. The study period was from January 1 to June 19, 2022, 
during which Omicron BA.2 variants were dominant with coverage over 
99% among the detected circulating SARS-CoV-2 strains [18]. By the 
end of 2021, the 2-dose vaccine coverage (i.e., fully vaccinated) reached 
64.0% among the general population with 40.3% for BNT162b2 and 
23.7% for Sinovac. By the end of April 2022, this 2-dose coverage 
increased to 84.2% (48.3% for BNT162b2, 35.9% for Sinovac) with a net 
growth of 21.2% within 4 months during the fifth epidemic wave in 
Hong Kong. For 3-dose vaccine, the coverage was 29.8% for BNT162b2 
and 14.3% for Sinovac on April 30, 2022. We assessed the VE of 
BNT162b2 and Sinovac against the transmission (i.e., infectiousness 
rather than infection) of SARS-CoV-2. 

In Hong Kong, real-time quantitative polymerase chain reaction (RT- 
qPCR) tests for SARS-CoV-2 infections were accessible and conducted in 
healthcare facilities and communities without substantial time or 
financial costs. All RT-qPCR test-positive SARS-CoV-2 cases were 
documented individually by the Centre for Health Protection of Hong 
Kong. Contact tracing was performed extensively before mid-February 
2022, but only a small fraction of cases was traced after this time 
point. The cessation of contact tracing was largely due to the limited 
human resources given the large number of cases. Contact history data 
were referred to when identifying transmission pairs between index 
cases and their associated test-positive close contacts (i.e., secondary 
cases, see Appendix S1) A visualization of the epidemic curve during 
study period can be found in Fig S4.1. 

The study population was RT-qPCR test-positive SARS-CoV-2 cases 
(both symptomatic and asymptomatic cases were included) aged 7 years 
and above with available contact tracing history. Baseline information 
for each case was provided by the Hong Kong Hospital Authority, a 
public sector corporation responsible for all public hospitals in Hong 
Kong where all COVID-19 patients were referred for admission. Contact 
tracing histories were obtained from the population-based surveillance 
data provided by CHP. Because of the prevailing COVID-19 elimination 
strategy, epidemic waves before 2022 were at relatively low levels with 
average daily cases < 20 accounting for less than 0.2% of the popula-
tion, which means the chance of re-infection was negligible. 

Data, variables, and inclusion and exclusion criteria are detailed in 
Appendix S2. 

2.2. Statistical analysis 

Zero-inflated negative binomial (ZINB) log-linear regression models 
were adopted to fit the secondary cases. The secondary case number of 
each index case was the outcome variable and the vaccine status was the 
variable of interest. As a frequently adopted approach in the analysis of 
count data, the choice of ZINB model was based on its advantage of 
capturing situations where the number of zeros occur more frequently 
than expected, which was likely for the secondary cases number under 
intensive disease control measures [19]. We accounted for the effects of 
time-varying disease control measures or self-protective behaviors that 
could reduce transmission risk and lead to zero secondary cases. We 
adjusted for test-positive date, an importation factor in each index case 
because COVID-19 control measures varied during different phases of 
outbreak. We estimated VE after adjusting for sex, age, residential dis-
trict, and test-positive date. The natural cubic spline was adopted to 
control the possible nonlinear association from numerical confounding 
variables (e.g., age, and calendar date). Technical details for ZINB 
regression models can be found in Appendix S3. 

Risk ratio (RR) was calculated for various vaccine status regarding 
0 dose as the reference level. V) was calculated as 1 minus RR. Using a 
maximum likelihood estimation approach, we summarized the point 
estimates and the 95% confidence interval (CI) was constructed using 
point estimate plus and minus 1.96-fold of the standard error. When RR, 
or any side of its 95% CI was larger than 1, the VE was transformed as – 
[1 – (1 / RR)] × 100% [20]. The two-sided p-value was calculated using 
Wald’s test, and statistical significance was claimed when p-value <
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0.05. 
Subgroup analyses were carried out by contact setting (household 

and non-household transmission), stratifying secondary cases according 
to vaccine doses received before infection, and age group of index cases 
(school-age teenager: 7–17 years, adults: 18–64 years, and the elderly 
>64 years). The vaccine lag effect was formulated as categorical vari-
ables according to 15–90, 91–180, 180–270, and >270 days since last 
dose, and the reference level was set as 0 dose. 

All statistical analyses were performed using R statistical software 
(version 3.6.1). Fitting the ZINB model was achieved by using R function 
“zeroinfl” in package “pscl” [21]. 

2.3. Role of the funding source 

The funder of the study had no role in the study design, data 
collection, data analysis, data interpretation, or writing of the report. 

3. Results 

17 535 cases were identified with detailed contact history allowing 
extraction of number of secondary cases (Fig. 1). Summary statistics are 
shown in Table 1. The interpretation of these descriptive statistics can be 
found in Appendix S5. The epidemic curve of local cases (excluding 
imported cases) is shown in Fig 2 and stratified by vaccine status (0, 1, 2, 
or 3 doses) and number of secondary cases generated (0 or > 0 cases). 
Due to the exponential increase in the number of cases during February 
2022 (see Appendix S4), mass contact tracing to investigate all cases 
and identify non-household contacts was stopped in mid-February. 

Amongst the 13 631 infected individuals generating no secondary 
cases, 3803 (27.9%) and 953 (7.0%) received 0 or 1 dose of vaccine, 
while 7383 (54.2%) and 1492 (10.9%) received 2 or 3 doses, respec-
tively. By contrast, among the 1489 infected individuals with at least 
one secondary case, 569 (38.2%) and 98 (6.6%) received 0 or 1 dose, 
while 716 (48.1%) and 106 (7.1%) received 2 or 3 doses, respectively. 
As such, the crude VE against generating secondary case of Omicron 
BA.2 variant was 35% (95% CI: 27, 42) and 53% (95% CI: 41, 62) for 
infected individuals that received 2- or 3-doses, respectively, versus no 
vaccine. 

After excluding cases with missing information or without eligible 
age or vaccine status (see Fig. 1) 15 526 were included for further sta-
tistical analyses. Among eligible index cases, the average number of 
secondary cases showed a decreasing trend with increasing doses of 
vaccine for both Sinovac (p = 0.023) and BNT162b2 (p = 0.019), see 
Fig. 3. Age sub-group analysis showed a similar significant negative 
association between vaccine dose and number of secondary cases in the 
18 – 64 age group, but not in school-age teenagers. Among older in-
dividuals, secondary case number was negatively associated with 
number of doses of BNT162b2 vaccine (p = 0.025), but not for Sinovac 
(p = 0.947). No association was detected for asymptomatic cases. 

The dose-dependent vaccine protection against generating second-
ary cases for infected individuals who received 2 or 3 doses of vaccine 
were converted to VE (see Table 2). For 2-dose Sinovac, VE was esti-
mated of 62.6% (95% CI: 21.8, 82.1), 13.5% (95% CI: 1.1, 32.8), and 
31.1% (95% CI: 10.0, 47.2) on 15 – 90, 91 – 180, 181 – 270 days after 
vaccination, respectively, under household contact setting. However, no 
evidence for positive VE was found regardless of contact settings on 15 – 

Fig. 1. Flowchart for sample selection. All 17 535 (out of a total of 755 668, 
2.3%) identified index cases (including both symptomatic and asymptomatic 
index cases) with known number of secondary cases (including those index 
cases with 0 secondary case, i.e., terminal and sporadic cases) were included 
for summary of baseline characteristics. Among them, a total of 15 526 
eligible index cases without missing data of key variables were included for 
statistical analysis. 
Note: The counting of secondary cases was based on the RT-qPCR testing status 
of close contacts, and only test-positive contacts were considered as secondary 
cases, which means both symptomatic and asymptomatic secondary cases 
were involved.   
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90, or 91 – 180 days after vaccination. For 2-dose BNT162b2, VE was 
estimated of 56.2% (95% CI: 14.5, 77.6), 30.6% (95% CI: 13.0, 44.6), 
and 21.3% (95% CI: 2.9, 36.2) for 15 – 90, 91 – 180, 181 – 270 days after 
vaccination, respectively, where a significant decreasing trend was 
detected with p-value < 0.001. For 3-dose vaccine, VEs were estimated 
of 41.0% (95% CI: 11.3, 60.7) and 41.9% (95% CI: 6.1, 64.0) for those 
receiving Sinovac and BNT162b2 within 15 - 180 days, respectively. 
Under non-household contact setting, no evidence of positive VE was 
detected for either Sinovac or BNT162b2. 

4. Discussion 

Using detailed individual-level surveillance and contact tracing data 
of COVID-19 cases, we estimated the VE of Sinovac and BNT162b2 

against transmission of Omicron BA.2 variants in a largely infection- 
naive but highly vaccinated population during the fifth COVID-19 
wave in Hong Kong. In the final dataset, there were 49.8% index cases 
that received 2-dose vaccine prior to infection, which was a vaccine 
coverage lower than in general population (66.0% for 2-dose as of 
January 2022) [17], reflecting protection of vaccine against 
SARS-CoV-2 infection. Both 2- and 3-dose Sinovac and BNT162b2 were 
associated with a range of protection against the risks of generating 
secondary cases (Table 2). VE against household transmission of Omi-
cron BA.2 was estimated at 62.6% or 45.3% within 15 - 90 days for 2 
doses of Sinovac or BNT162b2, respectively. Our estimated VE appeared 
slightly lower than previous estimates of 76% for Alpha variants [22,23] 
but similar to previous estimates of 40% for Delta variants [24]. For 
3-dose vaccinees, VE was estimated at 41.0% or 41.9% within 15 - 180 
days for Sinovac or BNT162b2, consistent with 32.3% found previously 
[12]. We performed sensitivity analysis by restricting our dataset to 
identified Omicron cases (we excluded those with Delta infection or 
without VoC identification). We found that these VE estimates were 
similar to our main results, especially for the point estimates, but with 
slightly wider 95% CIs, likely due to the reduced sample size. 

Households are an ideal setting for evaluating viral transmission and 
the effectiveness of vaccination [25]. In Hong Kong in 2022, the housing 
density was extremely high with a population density of 6747 people per 
square kilometre. Contact tracing was straightforward to perform in 
household settings and information of exposure history could be iden-
tified with relatively high certainty. VE was detected in household 
transmission settings but was unclear in non-household settings. The 
scale of VE for household settings was similar to overall VE estimates. 
Among all index cases, the mean number of offspring cases was esti-
mated at 0.14 (95% CI: 0.13, 0.16) or 0.04 (95% CI: 0.03, 0.05) for 
household and non-household settings, respectively. Despite relatively 
lower transmissibility for non-household settings, transmissibility had a 
relatively higher scale of statistical dispersion in terms of coefficient of 
variation (CV) at 16.8 compared to 5.9 for household setting. Higher 
heterogeneity in transmission implies that the majority of transmission 
events were driven by superspreading [26–28]. As such, the reduction in 
transmission associated with vaccine may be difficult to identify in the 
context of superspreading events. By contrast, household settings were 
less likely to facilitate super spreader events because the number of 
household contacts for each individual was relatively stable. From the 
standpoint of contact tracing surveillance, household contacts were 
straightforward to identify, whereas the identifying contacts in 
non-household settings (e.g., workplace, community, or school) were 
usually subject to the uncertainty from self-reporting and memory 
recall. The household setting has been widely adopted in previous 
studies in assessing VE against transmission of Omicron variants [11,13, 
29] and earlier SARS-CoV-2 strains [12,22,23,30,31], as well as other 
diseases [32]. Hence, we considered VE estimates in household settings 
to be a reliable measure of the true effect of vaccine against Omicron 
BA.2 variants’ transmission. 

We found a significant reduction in VE for 2-dose BNT162b2 re-
cipients from 56.2% to 7.4% as the time lag increased from 15 – 90 to 
over 270 days since the second dose. To the best of our knowledge, this 
waning effect against transmission of BA.2 variants was first reported 
using real-world observations and was also suggested for the waning of 
VE against infectiousness after confirmed infection with Delta variants 
[14]. Although waning protection was detected, our estimate of VE for 
3-dose BNT162b2 recipients was 50.4% which approached the VE of 
56.2% for 2-dose BNT162b2 at early stage after vaccination. This finding 
suggested that the waning protection of 2-dose BNT162b2 could be 
restored by a third dose of BNT162b2. A similar phenomenon in that the 
protective effect of 2-dose vaccines could be restored by a booster dose 
was previously reported for VE against SARS-CoV-2 infections [6,33,34] 
and severe illness with COVID-19 [35,36], but we are unaware of a 
similar finding regarding VE against transmission of Omicron BA.2 
variants. As the 3-dose vaccine program was initiated before the fifth 

Table 1 
Summary of the baseline characteristics of identified index cases (i.e., infector, n 
= 17 535) with known number of secondary cases.   

Number of index cases (row%) 
Vaccine status 
0 dose 1 dose 2 doses 3 doses 

All (n = 17,535) 4607 
(26.3%) 

1102 
(6.3%) 

8725 
(49.8%) 

3101 
(17.7%) 

Those with gender information (n = 17,265) 
Female (n = 9249) 2479 

(26.8%) 
615 
(6.6%) 

4606 
(49.8%) 

1549 
(16.7%) 

Male (n = 8016) 2040 
(25.4%) 

475 
(5.9%) 

3976 
(49.6%) 

1525 
(19.0%) 

Those with age information (n = 17,275) 
Age from 0 to 6 years (n =

1170) 
500 
(42.7%) 

77 
(6.6%) 

501 
(42.8%) 

92 (7.9%) 

Age from 7 to 17 years (n =
1183) 

414 
(35%) 

77 
(6.5%) 

584 
(49.4%) 

108 
(9.1%) 

Age from 18 to 64 years (n =
12,726) 

2931 
(23%) 

778 
(6.1%) 

6444 
(50.6%) 

2573 
(20.2%) 

Age of or over 65 years (n =
2196) 

681 
(31%) 

158 
(7.2%) 

1064 
(48.5%) 

293 
(13.3%) 

Those with information of case classification (n = 17,535) 
Local (n = 14,587) 4301 

(29.5%) 
1029 
(7.1%) 

7765 
(53.2%) 

1492 
(10.2%) 

Imported (n = 2948) 306 
(10.4%) 

73 
(2.5%) 

960 
(32.6%) 

1609 
(54.6%) 

Those with information of residential district (n = 13,100) 
Hong Kong Island (n = 1515) 351 

(23.2%) 
82 
(5.4%) 

752 
(49.6%) 

330 
(21.8%) 

Kowloon (n = 5014) 1435 
(28.6%) 

351 (7%) 2637 
(52.6%) 

591 
(11.8%) 

New Territories (n = 6571) 1823 
(27.7%) 

473 
(7.2%) 

3487 
(53.1%) 

788 
(12.0%) 

Epidemic period when test positive for COVID-19 (n = 17,535) 
Epidemic growth period from 

Jan 1 to Mar 3, 2022 (n =
15,120) 

4372 
(28.9%) 

1051 
(7.0%) 

8099 
(53.6%) 

1598 
(10.6%) 

Epidemic decline period from 
Mar 4 to May 13, 2022 (n 
= 762) 

132 
(17.3%) 

19 
(2.5%) 

223 
(29.3%) 

388 
(50.9%) 

Epidemic growth period from 
May 14 to Jun 19, 2022 (n 
= 1653) 

103 
(6.2%) 

32 
(1.9%) 

403 
(24.4%) 

1115 
(67.5%) 

Those with SARS-CoV-2 genetic variant information (n = 14,427) 
Delta variant (n = 389) 122 

(31.4%) 
31 
(8.0%) 

207 
(53.2%) 

29 (7.5%) 

Omicron variant (n =
14,038) 

3699 
(26.3%) 

909 
(6.5%) 

7311 
(52.1%) 

2119 
(15.1%) 

Period from last vaccine dose to test positive for COVID-19 
from 0 to 14 days (n = 844, 

excluding 0 dose) 
NA 250 

(29.6%) 
169 
(20.0%) 

425 
(50.3%) 

from 15 to 28 days (n = 857, 
excluding 0 dose) 

378 
(44.1%) 

110 
(12.8%) 

369 
(43.0%) 

from 29 to 90 days (n = 1993, 
excluding 0 dose) 

276 
(13.8%) 

497 
(24.9%) 

1220 
(61.3%) 

From 91 to 180 days (n =
4400, excluding 0 dose) 

145 
(3.3%) 

3344 
(76.0%) 

911 
(20.7%) 

Over 180 days (n = 4759, 
excluding 0 dose) 

50 
(1.1%) 

4554 
(95.7%) 

155 
(3.3%)  
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COVID-19 wave, we were only able to estimate the VE of three doses for 
a relatively short period since the its uptake. Among the 2655 3-dose 
vaccine recipients vaccinated more than 15 days before infection, 

1589 (59.8%) were vaccinated within 90 days before infection. We 
attempted to estimate 3-dose VE over 180 days since the last dose, but no 
evidence for a reduction in transmission was detected for three doses of 

Fig. 2. Daily number of identified infectors reported during 
the growing phase of the fifth epidemic wave in Hong Kong, 
stratified by number of vaccine dose received before SARS- 
CoV-2 infection. The top panels showed the epidemic curve, 
and cumulative distribution of vaccine status for cases WHO 
generated 0 secondary case (i.e., terminal and sporadic cases). 
The bottom panels showed the epidemic curve, and cumulative 
distribution of vaccine status for cases WHO generated >
0 secondary cases (i.e., those index cases leading to critical and 
supercritical transmission).   

Fig. 3. Summary statistics of number of secondary cases per index case, stratified by vaccination status, age groups, symptom status, and epidemic phase of index 
cases. In each panel, the dots were the mean secondary case number per index case, bars were 95% CIs, and the vertical axis was in log scale. The p-values for trend 
measured the statistical significance for the decreasing trend of secondary case numbers against the dose of vaccine with age, sex, calendar week, living region, 
importation status, and symptom status adjusted. 
Note: The “epidemic growth phase” here in the last column were the period from January 1 to February 15, 2022, which covered the period with a relatively high 
contact tracing intensity. 
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Sinovac or BNT162b2, or two doses of Sinovac followed by one dose of 
BNT162b2. As such, the duration of the protection from the booster dose 
remains unclear. 

To further control for the protective effect of vaccine against infec-
tion, we divided the cases into four groups according to the vaccine dose 
they received prior to infection (0, 1, 2, or 3 doses of any vaccine; 1 dose 
not shown due to limited sample size), see Appendix S6. For index cases 
who received 2-dose BNT162b2 within 15 – 90 days of infection, the 
estimated VE ranged from 47.6% to 87.9% for reduction in trans-
missibility to secondary cases who received 0 – 3 doses of any vaccine. 
Thus, we found evidence of the protective effects of vaccines after 

accounting for the vaccine status of secondary cases. For either vaccine, 
no evident trend was detected for VE against Omicron BA.2 variants’ 
transmission across various doses of vaccine received by the secondary 
cases. 

Another explanation for the association between the vaccinated 
index case and a lower risk to spread SARS-CoV-2 is that close contacts 
of vaccinated index cases were more likely to have been vaccinated. To 
avoid this undesired association, we performed sensitivity analysis to 
stratify the number of secondary cases by vaccine status (Appendix 
S6.1). We found the scale and trend of VE estimates were largely 
consistent with our main findings for index cases generating secondary 
cases vaccinated with 2 or 3 doses of any vaccine. For stratification by 
different age groups of index cases, evidence for the protection of both 
Sinovac or BNT162b2 was found only among adult index cases with age 
18–64 years (Appendix S6.2). Insignificant VE estimates for individuals 
age 7–17 and the age >64 years are likely due to a relatively small 
sample size. As such, we cannot conclude whether 2- or 3-dose vaccines 
received by an index case who was a teenager or an older adult provided 
protection against transmission. The results of VE estimates stratified by 
symptom status of index case are summarized in Appendix S6.3; VE for 
symptomatic index case were largely consistent with the main results. 
For asymptomatic index cases, significant protection was detected 
among those aged 18–64 years with 2-dose BNT162b2; insignificant VE 
estimates in other age groups may be due to limited sample size. 

Immune escape might contribute to the high transmissibility of 
Omicron variants in populations with moderate coverage of vaccines 
such as in Hong Kong. The Omicron variants appears to evade immunity 
developed from both prior infection and vaccination in terms of low 
neutralizing antibody titer [4,37,38] and three doses of BNT162b2 
provided nearly ineffective protection against symptomatic infection at 
> 20 weeks after booster dose [13,39]. These findings highlight the 
importance of continuous monitoring of the epidemiologic characteris-
tics of and vaccine effectiveness against emerging SARS-CoV-2 variants 
in communities regardless of vaccine coverage or infection rate of pre-
vious epidemics [1,40]. Two-dose vaccination plus a booster showed 
moderate significant protection against COVID-19 transmission, and 
was recommended first for the elderly, people with high-risk factors, and 
then the general population in Hong Kong [17]. Considering the 
increased selection advantage of Omicron variants compared with other 
strains [2,41–43], developing vaccines with long-term protection and 
transmission of COVID-19 was desired. Although the clinical severity 
after infected Omicron variants was lower compared to previous VoCs 
[44–46], high transmission was of concern [47]. PHSMs such as using of 
facemasks focused on high-risk groups including vulnerable pop-
ulations, those with high chance of exposure, and contact settings with 
poor ventilation or hygiene were suggested during the -19 pandemic, 
accompanied by the promotion of vaccines. 

4.1. Limitations 

This study has several limitations. First, we cannot exclude the 
possibility that misclassification of index cases versus secondary cases 
might have occurred, which was difficult to eliminate from the existing 
dataset. Since the analyses relied on surveillance data of contact tracing 
history, any degree of recalling bias and case underreporting during 
contact tracing could affect the accuracy of identified transmission pairs 
and thus might dilute our VE estimates. Due to lack of genomic analysis, 
transmission pairs were reconstructed through suspected epidemiolog-
ical link according to contact tracing history, which was not definitive. 
Second, we were only able to investigate the effectiveness of 3-dose 
vaccines for a relatively short period of time as the third dose vaccine 
program was initiated close to the start of the fifth COVID-19 wave. Most 
cases that had received the booster dose were vaccinated within 90 days 
before infection. While the insignificant VE of 3-dose Sinovac or 
BNT162b2 over 90 or 180 days might imply a decay in effect, the waning 
protection of booster vaccine against the transmission of Omicron BA.2 

Table 2 
Summary of vaccine effectiveness (VE, in%) estimates against generating sec-
ondary cases, stratified by vaccine doses and combination of vaccine types of 
infector, lag from last dose, and contact settings (i.e., household, and non- 
household).  

Vaccine 
dose  
of index 
case 

Lag  
from last 
dose  
to test 
positive 

Sample  
size 

VE against generating secondary cases 
(95% CI)a 

Categorized by contact 
setting 

Overall 

Household Non- 
household 

0 dose NA 4003 Reference 

1 dose 
any 15 – 90 d 593 7.4 (− 21.3, 

32.5) 
54.6 
(− 40.1, 
87.7) 

18.7 
(− 15.2, 
43.9) 

> 90 d 180 − 19.4 
(− 52.2, 
26.4) 

9.7 (− 79.5, 
83.3) 

− 14.4 
(− 52.8, 
35.7) 

2 doses 
Sinovac × 2 15 – 90 d 229 62.6 (21.8, 

82.1) 
− 17.8 
(− 78.6, 
68.2) 

44.9 
(− 10.3, 
72.7) 

91 – 180 
d 

1083 13.5 (1.1, 
32.8) 

17.6 
(− 46.6, 
63.7) 

15.1 
(− 11.8, 
36.4) 

181 – 
270 d 

1195 31.1 (10.0, 
47.2) 

23.7 
(− 44.2, 
67.5) 

29.8 (4.8, 
48.3) 

> 270 d 181 11.4 
(− 38.3, 
51.6) 

52.4 
(− 79.1, 
95.3) 

21.5 
(− 39.2, 
62.5) 

BioNTech 
× 2 

15 – 90 d 304 45.3 (2.7, 
69.2) 

81.4 
(− 46.0, 
98.1) 

56.2 
(14.5, 
77.6) 

91 – 180 
d 

1921 37.2 (21.7, 
49.6) 

4.8 (− 40.0, 
45.6) 

30.6 
(13.0, 
44.6) 

181 – 
270 d 

2266 21.7 (4.6, 
35.7) 

18.9 
(− 31.0, 
54.6) 

21.3 (2.9, 
36.2) 

> 270 d 487 − 3.2 
(− 38.2, 
33.9) 

43.7 
(− 63.0, 
88.3) 

7.4 
(− 34.6, 
43.9) 

3 doses 
Sinovac × 3 15 – 180 

d 
593 41.0 (11.3, 

60.7) 
48.2 
(− 51.5, 
87.0) 

43.6 (8.5, 
65.2) 

> 180 d 17 not calculatedb 

Sinovac × 2 
+

BioNTech 

15 – 180 
d 

183 61.1 (− 3.7, 
85.4) 

− 67.8 
(− 98.7, 
12.3) 

− 10.8 
(− 56.5, 
45.3) 

> 180 d 14 not calculatedb 

BioNTech 
× 3 

15 – 180 
d 

757 41.9 (6.1, 
64.0) 

77.8 
(− 39.0, 
97.0) 

50.4 (9.7, 
72.8) 

> 180 d 66 35.3 
(− 91.5, 
96.4) 

24.3 
(− 95.4, 
97.4) 

42.9 
(− 91.6, 
97.3)  

a Adjusted for sex, age, calendar week, living region, importation status. 
b The VE estimates was not calculated due to insufficient samples with size <

50. 
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variants was largely unassessed due to lack of data with longer post- 
vaccination period. Third, our analysis did not adjust for immunocom-
promised status, which has been shown to be an important determinant 
of vaccine performance [6,48]. Fourth, due to a lack of test-negative 
control group, we choose number of transmitted cases as the outcome. 
Thus, the vaccine status of transmitted cases cannot be directly adjusted, 
which was accounted for in sensitivity analysis (Appendix S6.1). 
Fourth, this study was based on the contact tracing data from January to 
June 2022, but the contact tracing information was scarce after 
mid-February 2022 due to the limited human resources and large 
number of cases. Overall, roughly 2% of total cases were traced. After 
mid-February 2022, contact tracing procedures in Hong Kong may bias 
towards the patients infected by cases that were previously traced and 
were symptomatic or imported cases. These patients were likely to 
self-isolate, and more likely to accept COVID-19 tests or show symptoms 
so their close contacts were aware of the risk of transmission. Thus, 
index cases identified at a later stage may have generated a smaller 
number of secondary cases than those not identified. As shown in the 
panels in the last column of Fig. 3, index cases identified at an earlier 
stage generated a slightly higher number of secondary cases (see first 
column). Thus, while we have adjusted both time-varying effects of 
policy changes and importation status, our VE estimates might be 
overestimated. Similarly, comparing two recent studies based on data in 
Israel [14] and mainland China [16], where mainland China has a 
relatively intensive COVID-19 control, the reduction in infectiousness 
associated with vaccine is likely to be detected in the context with strict 
disease control measures. This may be because multiple times, 
high-level or long-duration of exposure risks from seed case to secondary 
cases were like to occur under relaxed control strategies, such that 
vaccine protection might become marginal. Therefore, as control pol-
icies in Hong Kong were relatively strict, the change in contact tracing 
coverage in our dataset is unlikely to affect our main findings. Other 
technical limitations re discussed in Appendix S7. Finally, since Omi-
cron BA.2 variants were dominant in Hong Kong during the study 
period, we restricted interpretation of our findings to BA.2 variants; 
further investigations were needed for other emerging or circulating 
genetic variants of SARS-CoV-2 and sub-lineages of Omicron BA.5. 

5. Conclusions 

Using real-world observations, significant protection against the 
transmission of SARS-CoV-2 Omicron BA.2 variants was found for index 
cases who received 2 or 3 doses of Sinovac or BNT162b2 vaccines. A 
reduction in VE was reported from 56.2% to 7.4% for 2-dose BNT162b2 
recipients as the time lag increased since the second dose. This research 
highlights the importance of continuously evaluating VE against 
emerging SARS-CoV-2 variants as they evolve regardless of existing 
vaccine coverage. 
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