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A B S T R A C T

Background: Exposure to ambient ozone may be associated with a decline in ovarian reserve; however, epide
miological evidence remains limited. We aimed to estimate the association between ambient ozone exposure and 
ovarian reserve, and to identify critical exposure windows.
Methods: We included 2815 women aged 20–45 years who attended an infertility clinic in Chengdu, Sichuan 
Province, China, between 2014 and 2022. We calculated average concentrations of ozone exposure according to 
the development of follicles (2-month, 4-month, 6- month) and 1-year periodprior to measurement, using a 
satellite-based spatiotemporal model. Multivariate linear and Poisson regression models were used to assess 
associations between exposure to ambient ozone and ovarian reserve biomarkers, including antral follicle count 
(AFC), anti-Müllerian hormone (AMH), and estradiol (E2). Stratified analyses were performed by age, body mass 
index (BMI), and education to evaluate potential effect modification.
Results: Each 10 μg/m3 increase in ozone concentration during 4-month and 6-month were associated with a 
0.88 % (95 % CI: 0.44 %, 1.32 %) and 0.85 % (95 % CI: 0.28 %, 1.43 %) decrease in AFC, respectively. The 
associations were stronger among women with middle school or lower, and those with BMI ≥24 kg/m2 during 
both the 4-month and 6-month exposure windows. We observed no associations between exposure to ambient 
ozone and AMH or E2.
Conclusions: Exposure to ambient ozone was associated with decreased ovarian reserve among adult women 
attending an infertility clinic in China. These findings suggest that exposure to ozone could serve as a potential 
environmental risk factor for diminished ovarian reserve.

1. Introduction

Infertility is a growing global public health concern, affecting 
roughly 15 % of reproductive-age couples worldwide (Zhou et al., 
2021). In China, the prevalence of infertility have risen from 11.9 % in 
2007 to 18 % in 2020 (Wang et al., 2024a). Ovarian reserve, defined as 
the quantity and quality of follicles in both ovaries, is a key indicator of 

female reproductive potential (Broekmans et al., 2010). Common in
dicators used to assess ovarian reserve include antral follicle count 
(AFC), anti-Müllerian hormone (AMH), and estradiol (E2) (Salemi et al., 
2024; Practice Committee of the American Society for Reproductive 
Medicine, 2020). AFC reflects the available pool of small antral follicles, 
serving as a direct measure of ovarian reserve. AMH, a glycoprotein 
hormone secreted by granulosa cells of early developing follicles, also 
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indicates the size of the remaining follicular pool. E2, a steroid sex 
hormone produced by ovarian follicles, is often combined with other 
biomarkers to predict for ovarian reserve due to menstrual cycle varia
tion (Tal and Seifer, 2017; Findlay et al., 2015).

Prior studies have shown that genetic, environmental, and psycho
logical factors all contribute to the decline in ovarian reserve (Hu et al., 
2025; Huang et al., 2025; Han et al., 2024a). Among these, environ
mental exposures, particularly ambient particulate matter (PM), has 
been extensively studied (La Marca et al., 2020; Quraishi et al., 2019; 
Han et al., 2024b). Since the implementation of the “Blue Sky Defense 
Battle” (a national air pollution control campaign in China), concen
trations of common air pollutants, including PM and sulfur dioxide have 
decreased excepted for ozone, with the annual concentration from 
80.07 μg/m3 in 2016 to 96.04 μg/m3 in 2023 (Zhang et al., 2025). 
However, evidence regarding the impact of ambient ozone exposure on 
ovarian reserve remains limited and inconsistent. A study conducted in 
Wuhan involving 4544 women reported an association between expo
sure to ambient ozone and a decline in AMH (Liu et al., 2024). In 
contrast, other studies found no significant association between ozone 
exposure and AMH (Pang et al., 2023; Kim et al., 2021). Additionally, 
most existing studies have focused solely on AMH, neglecting other 
ovarian reserve biomarkers such as AFC. Since AFC provides a direct 
assessment of the number of small antral follicles, evaluating multiple 
biomarkers can allow for a more comprehensive and robust assessment 
of ovarian reserve.

Given the ongoing decline in female fertility and the rise in ambient 
ozone levels in China, it is imperative to estimate the association be
tween ozone exposure and ovarian reserve. Therefore, we sought to 
evaluate the association between ambient ozone exposure and multiple 
ovarian reserve biomarkers, including AFC, AMH, and E2, among 2815 
reproductive-age women in Sichuan, China. Additionally, we sought to 
identify critical exposure windows and vulnerable subpopulations.

2. Methods

2.1. Study population

We recruited a total of 4127 women who underwent assisted 
reproductive technology (ART) cycles at healthcare centers in Chengdu, 
Sichuan Province, China, from 2014 to 2022. Among those, 414 women 
were excluded because they had not resided in Sichuan Province for at 
least one year or lack documented residential address. Participants were 
further excluded if they (1) aged <20 or >45 years (n = 15); (2) diag
nosis of endometriosis or chromosome abnormalities(n = 254); (3) 
history of oophorectomy or polycystic ovary syndrome(n = 454); (4) 
presence of endocrine or immunological diseases, such as pituitary ad
enoma, hypothyroidism, hyperprolactinemia, or systemic lupus ery
thematosus(n = 175). After all exclusions, 2815 participants were 
included in the final analysis (Fig. S1). The study was approved by the 
Medical Ethics Committee of Sichuan Provincial Women’s and Chil
dren’s Hospital.

2.2. Ovarian reserve indicators

Ovarian reserve was comprehensively evaluated using three bio
markers: AFC, AMH, and E2. AFC was assessed by reproductive gyne
cology specialists using transvaginal ultrasound of both right and left 
ovaries between days 2 and 3 of a natural menstrual cycle. On the same 
days, blood samples were collected, and serum was separated for hor
monal analysis.

Serum E2 levels was measured using a chemiluminescent immuno
assay platform (Roche Diagnostics GmbH, Mannheim, Germany), and 
serum AMH was measured with an enzyme-linked immunosorbent assay 
kit (Guangzhou Kangrun Biotech, Co., Ltd., Guangdong, China) (Wan 
et al., 2024; Gong et al., 2020; Huang et al., 2023).

Based on the stages of follicle development, we defined four crucial 

exposure windows: secondary to small antral stage (2-month); primary 
to the secondary stage (4-month); the entire process from primary to 
small antral stage (6-month); and the 1-year period prior to measure
ment (Fig. 1) (McGee and Hsueh, 2000).

2.3. Environmental exposure data

Daily mean concentrations of sulfur dioxide (SO2), nitrogen dioxide 
(NO2), carbon monoxide (CO) and the maximum 8-h average ozone (O3) 
in Sichuan Province during 2014–2022 were obtained from the China
HighAirPollutant (CHAP) database. This database integrates ground 
observation data, atmospheric reanalysis, modeling simulations, and 
pollute emissions using space-time extremely randomized trees models, 
and demonstrates high quality with cross-validation R2 values ranging 
from 0.80 to 0.92, accounting for the spatial and temporal heterogeneity 
of air pollutants. Detailed information on database development is 
available in previous studies (Wei et al., 2022a, 2022b, 2023). For each 
participant, daily air pollutant concentrations were assigned based on 
their residential addresses, and average concentrations were calculated 
for each exposure window (2-month, 4-month, 6-month and 1-year 
period prior to measurement).

2.4. Covariates

Body mass index (BMI) was calculated as weight (kg)/height (m2) for 
each individual (Olsen et al., 2015). We collected demographic and 
health information for each participant, including age (continuous), BMI 
(<24 kg/m2 versus ≥24 kg/m2), education (middle school or lower, 
high school or higher), ethnicity (Han, other), smoking status (yes, no), 
alcohol consumption (yes, no), employment status (yes, no), infertility 
factors (female, male, both), infertility duration (<2 years, 2–5 years, 
>5 years), dysmenorrhea (yes, no), and history of clinical pregnancy 
(yes, no) (Liu et al.).

2.5. Statistical analysis

Continuous variables were summarized as means ± standard de
viations, and categorical variables as frequencies and percentages. 
Generalized linear model with a Poisson distribution and log-link 
function was used to estimate associations between ambient ozone 
exposure and AFC, and multivariate linear regression models were used 
for AMH and E2. We adjusted for covariates in a stepwise manner. The 
crude models were unadjusted. The partial adjusted models were 
adjusted for age, BMI, education, smoking, and alcohol consumption. 
The fully adjusted models were additionally adjusted for ethnicity, 
employment, infertility factors and duration, dysmenorrhea, and history 
of clinical pregnancy.

To identify crucial exposure windows, we included the four exposure 
windows (2-month, 4-month, 6-month, and the 1-year period prior to 
measurement) in the fully adjusted models one by one. To identify po
tential sensitive subpopulations, we performed stratified analyses by age 
(<30 years versus ≥30 years), BMI (<24 kg/m2 versus ≥24 kg/m2), 
education (middle school or lower, high school or higher), and 
dysmenorrhea (yes versus no). (Chen et al., 2022). Results were 
expressed as percentage changes per 10 μg/m3 increase in ozone using 
100 × [exp(β) - 1].

To examine the exposure-response relationships between ambient 
ozone exposure and ovarian reserve, we employed natural cubic splines 
with three knots located at 10th, 50th, 90th percentiles for ambient 
ozone exposure (Liu et al.).

We performed several sensitivity analyses to test the robustness of 
our findings. First, since our study population comprised women with 
subfertility, we restricted analyses to those with normal ovarian reserve 
(AFC >7) to minimize potential bias (Xu et al., 2020; Ferraretti et al., 
2011). Second, we constructed two-pollutant models by individually 
adjusting for co-exposures to CO, SO2 and NO2, to assess whether the 
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observed association between ambient ozone and ovarian reserve was 
independent of other air pollutants.

We performed all statistical analyses in R version 4.2.1. Statistical 
significance was determined by a two-sided P value < 0.05.

3. Result

3.1. Descriptive statistics

A total of 2815 women were included in the final analysis, with their 

demographic characteristics summarized in Table 1. Most participants 
were of Han ethnicity (92.8 %), had a BMI <24 kg/m2 (78.1 %), and 
attained a high school or higher level of education (63.2 %). The ma
jority had never experienced a clinical pregnancy (83.7 %), and nearly 
half had an infertility duration of ≤2 years (47.8 %). The mean (SD) 
values for AFC, AMH, and E2 were 13.3 (6.7), 3.3 (2.7) ng/ml, and 46.4 
(44.2) pg/ml, respectively (Table S1).

Participants were predominantly distributed in the central and 
eastern regions of Sichuan Province, with fewer from the western areas 
(Fig. S2 and Fig. S3). The estimated annual average concentration of 
ambient ozone in Sichuan from 2014 to 2022 ranged from 35 μg/m3 to 
134 μg/m3 (Fig. S4). Table S2 presents descriptive statistics for ozone 
concentrations across different exposure windows. Ozone concentra
tions were negatively correlated with SO2, NO2, and CO during the 2- 
month, 4-month and 6-month exposure windows, with correlation co
efficients all below 0.8 (Table S3).

3.2. Exposure to ambient ozone and ovarian reserve

Exposure to ambient ozone during the 4-month and 6-month periods 
was associated with diminished ovarian reserve, as indicated by lower 
AFC (Table 2). In contrast, no associations were observed between 
exposure to ambient ozone and AMH or E2 (Table 4).

We estimated the associations between exposure to ambient ozone 
and AFC across four critical periods based on follicular development 
stages. Similar associations were observed for the 4-month and 6-month 
exposures. Specifically, each 10 μg/m3 increase in ozone exposure was 
associated with a 0.88 % (95 % CI: 0.44 %, 1.32 %) and 0.85 % (95 % CI: 
0.28 %, 1.43 %) reduction in AFC levels for the 4-month and 6-month 
exposures, respectively. No significant associations were found for the 
2-month and 1-year exposures, with percentage changes of 0.22 % (95 % 
CI: − 0.16 %, 0.59 %) and − 0.53 % (95 % CI: − 2.25 %, 1.18 %), 
respectively.

The exposure-response curves demonstrated a decline in AFC with 
increasing ozone concentrations across 4-month, 6-month and 1-year 
exposure windows (Fig. 2). In the 4-month and 6-month exposures, 
AFC declined sharply to about 90–100 μg/m3, after which the curves 
plateaued or slightly rebounded. For the 1-year exposure, the curve 
appeared relatively flat.

3.3. Stratified analyses

Subgroup analyses were conducted to identify potentially vulnerable 
populations. The associations between ambient ozone exposure and AFC 
were particularly pronounced among women with BMI ≥24 kg/m2 and 
those with a middle school education or lower during the 4-month and 
6-month exposures (Fig. 3). For example, we found more pronounced 
associations among women whose BMI ≥24 kg/m2 as compared to 
whose BMI <24 kg/m2 [− 0.87 % (95 % CI: − 1.36 %, − 0.38 %) vs − 0.74 
% (95 % CI: − 1.38 %, − 0.09 %) for the 4-month exposure, − 1.58 (95 % 
CI: − 2.87 %, − 0.29 %) vs − 1.23 % (95 % CI: − 2.19 %, − 0.26 %) for the 
6-month exposure]. Similarly, stronger associations were observed 

Fig. 1. The exposure windows for antral follicle development. 2-month: secondary to small antral stage; 4-month: primary to the secondary stage; 6-month: from 
primary to small antral stage; and the 1-year period prior to measurement.

Table 1 
Demographic and clinical characteristics of the study population (N =
2815).

Characteristics N (%) or Mean ± SD

Age (years) 31.5 ± 4.6
BMI (kg/m2)

<24 2198 (78.1)
≥24 615 (21.8)
Missing 2 (0.1)

Ethnicity
Han 2613 (92.8)
Other 202 (7.2)

Education
Middle school or lower 1030 (36.6)
High school or higher 1778 (63.2)
Missing 7 (0.2)

Employment status
Yes 2408 (85.5)
No 397 (14.1)
Missing 10 (0.4)

Smoking
Yes 92 (3.3)
No 2723 (96.7)

Alcohol consumption
Yes 13 (0.5)
No 2802 (99.5)

Dysmenorrhea
Yes 886 (31.5)
No 1929 (68.5)

History of clinical pregnancy
Yes 459 (16.3)
No 2356 (83.7)

Infertility factor
Female 1098 (39.0)
Male 485 (17.2)
Both 1134 (40.3)
Unexplained 98 (3.5)

Infertility duration (years)
≤2 1345 (47.8)
2-5 753 (26.7)
≥5 644 (22.9)
Missing 73 (2.6)

AFC (n) 13 ± 7
AMH (ng/ml) 3.3 ± 2.7
E2 (pg/ml) 46.4 ± 44.2

Abbreviations: SD = standard deviation; AFC = antral follicle count; 
AMH = anti-Müllerian hormone; E2 = estradiol.
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among women with middle school or lower education compared to 
those with a high school or higher [− 1.24 % (95 % CI: − 2.04 %, − 0.43 
%) vs − 0.73 % (95 % CI: − 1.25, − 0.20 %) for the 4-month exposure]. 
However, in the subgroup analyses for AMH and E2, we found non- 
significant associations (Table S4 and Table S5).

3.4. Sensitivity analysis

Two main sensitivity analyses were conducted to confirm the 
robustness of our findings. Our results were not materially different 
when we additionally adjust for co-pollutant (Table 3).

When participants with abnormal ovarian reserve (defined as AFC 
≤7) were excluded, the association became even more pronounced 
(Table 2). Specifically the percentage changes in AFC among all par
ticipants was − 0.88 % (95 % CI: − 1.32 %, − 0.44 %) for the 4-month 
exposure and − 0.85 % (95 % CI: − 1.43 %, - 0.28 %) for the 6-month 
exposure, compared to − 1.10 % (95 % CI: − 1.57 %, − 0.62 %) and 
− 1.25 % (95 % CI: − 1.88 %, − 0.63 %), respectively, among women 
with normal ovarian reserve.

4. Discussion

Among 2815 Chinese adult women attending an infertility clinic, 
exposure to ambient ozone was associated with decreased AFC during 
the 4-month and 6-month exposures, but not with AMH and E2. We 
observed stronger associations among women whose BMI ≥24 kg/m2 

and those with middle school or lower education. We also observed 
stronger associations among women with normal AFC. In the two- 
pollutant models, our results remained significant adjusted individu
ally for SO2 and NO2.

Prior studies have primarily focused on the effects of particulate 
matter on ovarian reserve as measured by AFC, with scarce evidence of 
the association between exposure to ambient ozone and AFC (Hood 

Table 2 
Percentage changes in AFC associated with each 10 μg/m3 increment in con
centrations of ozone.

Exposure 
windowsa

Percentage changes (95 % CI)

Model 1b Model 2c Model 3d Among women 
with normal 
AFCe

2-month 
(μg/m3)

− 0.06 
(− 0.42, 
0.30)

0.26 (− 0.10, 
0.63)

0.22 (− 0.16, 
0.59)

0.01 (− 0.39, 
0.42)

4-month 
(μg/m3)

− 0.82 
(− 1.23, 
− 0.40)

− 0.86 
(− 1.28, 
− 0.44)

− 0.88 
(− 1.32, 
− 0.44)

− 1.10 (− 1.57, 
− 0.62)

6-month 
(μg/m3)

− 1.01 
(− 1.56, 
− 0.46)

− 0.81 
(− 1.36, 
− 0.25)

− 0.85 
(− 1.43, 
− 0.28)

− 1.25(− 1.88, 
− 0.63)

1-year (μg/ 
m3)

− 0.94 
(− 2.57, 
0.68)

0.49 (− 1.16, 
2.14)

− 0.53 
(− 2.25, 
1.18)

− 0.91 (− 2.83, 
1.00)

Abbreviations: CI = confidence interval; AFC = antral follicle count.
a Exposure windows included four key periods: from secondary follicle to 

small antral follicle stage (2-month); from primary follicle to secondary follicle 
stage (4-month); from primary follicle to small antral follicle stage (6-month); 
the 1-year period prior to measurement.

b Model 1 was unadjusted.
c Model 2 were adjusted for age, body mass index, education (middle school or 

lower, high school or higher), smoking status (yes, no), alcohol consumption 
(yes, no).

d Model 3 were adjusted for age, body mass index, education (middle school or 
lower, high school or higher), ethnicity (Han, other), smoking status (yes, no), 
alcohol consumption (yes, no), employment status (yes, no), infertility factors 
(female, male, both), infertility duration (<2, 2–5, >5 years), dysmenorrhea 
(yes, no), history of clinical pregnancy (yes, no).

e Women with normal AFC was defined as women with AFC >7.

Fig. 2. Exposure-response relationships between ozone concentrations and AFC across different exposure windows.

Y. Shi et al.                                                                                                                                                                                                                                      International Journal of Hygiene and Environmental Health 271 (2026) 114693 

4 



et al., 2021; Gaskins et al., 2019; Wieczorek et al., 2024). For example, 
research in the United States suggested that higher PM2.5 exposure was 
associated with lower AFC among 565 women of reproductive age 
(Hood et al., 2021). Another study also conducted in America reported 
consistent result of 632 women from a fertility clinic (Gaskins et al., 
2019). Similarly, a retrospective study reported a negative association 
between PM2.5 exposure and AFC in Europe across 511 women, with the 
coefficient of − 0.03 (95 % CI: − 0.28, − 0.01) (Wieczorek et al., 2024). 
Our study narrowed the knowledge gap by examining the association 
between exposure to ambient ozone and ovarian reserve, as manifested 
by AFC, AMH and E2 during four critical exposure windows.

Our results of the adverse effect of exposure to ambient ozone on AFC 
were in contrast with an analysis in Shanxi, among 600 Chinese women, 
the only study that examined the effect of exposure to ambient ozone on 
AFC during three exposure windows so far (Feng et al., 2021). That 
study, which used monthly ozone concentrations from 262 local moni
toring sites, reported no significant association between exposure to 
ambient ozone and AFC (estimated effects ranging from 0.01 to 0.03), 
whereas we found significant percentage changes of − 0.88 % and − 0.85 
% during the 4-month and 6-month exposures, respectively. However, 
both studies found no association between exposure to ambient ozone 
and AFC during the 2-month exposure window. The distinctions may be 

caused by the differences in ozone concentrations (120.0 vs 91.1 
μg/m3), sample size (600 vs 2815 women), and covariate adjustments.

We found no association of exposure to ambient ozone on AMH or E2, 
which is consistent with most prior studies (Pang et al., 2023; Kim et al., 
2021; Wieczorek et al., 2024). For example, a study in Shandong 
Province involving 18,878 women reported non-significant associations 
of exposure to ambient ozone and AMH, with estimated effects ranging 
from − 0.02 to 0.03 (Pang et al., 2023). Similarly, a Korean study of 2276 
women also found non-significant association between exposure to 
ambient ozone with AMH, with percentage changes ranging from 0.4 % 

Fig. 3. Percentage changes in AFC associated with a 10 μg/m3 increase in ozone concentration, stratified by age, body mass index, education, and dysmenorrhea. 
Models were adjusted for age, body mass index, education (middle school or lower, high school or higher), ethnicity (Han, other), smoking status (yes, no), alcohol 
consumption (yes, no), employment status (yes, no), infertility factors (female, male, both), infertility duration (<2, 2–5, >5 years), dysmenorrhea (yes, no), history 
of clinical pregnancy (yes, no).

Table 3 
Percentage changes in AFC associated with each 10 μg/m3 increment in ozone 
concentration in two-pollutant models.

Sensitivity 
analysis

2-month 
(μg/m3)

4-month (μg/ 
m3)

6-month (μg/ 
m3)

1-year (μg/ 
m3)

Main results 0.22 (− 0.16, 
0.59)

− 0.88 
(− 1.32, 
− 0.44)

− 0.85 
(− 1.43, 
− 0.28)

− 0.53 
(− 2.25, 
1.18)

Co-pollutant adjustment
CO 0.70 (0.27, 

1.14)
− 0.45 
(− 0.98, 0.07)

− 0.29 
(− 0.93, 0.36)

− 0.18 
(− 1.91, 
1.55)

SO2 0.24 (− 0.14, 
0.62)

− 0.87 
(− 1.31, 
− 0.43)

− 0.84 
(− 1.42, 
− 0.25)

− 0.47 
(− 2.24, 
1.31)

NO2 0.41 (0.02, 
0.81)

− 0.60 
(− 1.06, 
− 0.14)

− 0.60 
(− 1.19, 
− 0.01)

− 0.91 
(− 2.64, 
0.82)

Abbreviations: NO2 = nitrogen dioxide; SO2 = sulfur dioxide; CO = carbon 
monoxide; AFC = antral follicle count.
Models were adjusted for age, body mass index, education (middle school or 
lower, high school or higher), ethnicity (Han, others), smoking status (yes, no), 
alcohol consumption (yes, no), employment status (yes, no), infertility factors 
(female, male, both), infertility duration (<2, 2–5, >5 years), dysmenorrhea 
(yes, no), history of clinical pregnancy (yes, no).

Table 4 
Percentage changes in AMH or E2 associated with a 10 μg/m3 increase of 
ambient ozone during different exposure windows.

Exposure 
windowsa

Percentage changes (95 % CI)

Model 1b Model 2c Model 3d

AMH
2-month (μg/ 

m3)
0.34 (− 3.07, 3.77) 1.70 (− 1.54, 4.96) 1.47 (− 1.86, 4.80)

4-month (μg/ 
m3)

− 0.71 (− 4.66, 
3.26)

1.01 (− 4.75, 2.75) − 1.17 (− 5.03, 
2.70)

6-month (μg/ 
m3)

− 0.57 (− 5.78, 
4.66)

0.12 (− 4.81, 5.08) − 0.24 (− 5.31, 
4.86)

1-year (μg/m3) − 9.75 (− 25.18, 
5.93)

− 4.43 (− 19.19, 
10.55)

− 7.50 (− 22.68, 
7.92)

E2
2-month (μg/ 

m3)
− 21.88 (− 73.93, 
33.11)

− 38.59 (− 91.74, 
17.68)

− 38.93 (− 92.20, 
17.47)

4-month (μg/ 
m3)

28.71 (− 34.67, 
96.25)

30.20 (− 35.38, 
100.24)

35.61 (− 30.57, 
106.31)

6-month (μg/ 
m3)

16.29 (− 65.20, 
104.89)

4.70 (− 78.77, 
95.72)

10.42 (− 73.92, 
102.45)

1-year (μg/m3) − 35.55(-248.56, 
237.84)

− 18.15 (− 241.61, 
271.14)

19.25 (− 213.06, 
320.14)

Abbreviations: CI = confidence interval; AMH = anti-Müllerian hormone; E2 =

estradiol.
a Exposure windows included four key periods: from secondary follicle to 

small antral follicle stage (2-month); from primary follicle to secondary follicle 
stage (4-month); from primary follicle to small antral follicle stage (6-month); 
the 1-year period prior to measurement.

b Model 1 was unadjusted.
c Model 2 were adjusted for age, body mass index, education (middle school or 

lower, high school or higher), smoking status (yes, no), alcohol consumption 
(yes, no).

d Model 3 were adjusted for age, body mass index, education (middle school or 
lower, high school or higher), ethnicity (Han, other), smoking status (yes, no), 
alcohol consumption (yes, no), employment status (yes, no), infertility factors 
(female, male, both), infertility duration (<2, 2–5, >5 years), dysmenorrhea 
(yes, no), history of clinical pregnancy (yes, no).
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to 0.7 % (Kim et al., 2021). In addition, a recent study from Poland 
involving 511 women of reproductive age reported a non-significant 
decline in E2 associated with exposure to ambient ozone, with an esti
mated effect of − 0.03 (95 % CI: − 0.122, 0.067) for the 6-month expo
sure (Wieczorek et al., 2024). In a cross-sectional study, Rosen and his 
colleagues observed that, among various ovarian reserve markers, only 
AMH and AFC accurately reflected the histological pattern of diminished 
ovarian reserve. Although AMH assay was more cost-effective, AFC 
provided superior diagnostic accuracy and was a less invasive assess
ment (Rosen et al., 2012). Consistent with this research, a systematic 
review and meta-analysis also reported that AFC was identified as a 
marginally superior indicator of ovarian response to controlled ovarian 
hyperstimulation compared to AMH (Salemi et al., 2024).

We observed that the association between exposure to ambient 
ozone and AFC was stronger among women whose BMI ≥24 kg/m2, 
consistent with two previous studies that also reported stronger associ
ations of exposure to ambient ozone on AMH in women whose BMI ≥24 
kg/m2 (Moslehi et al., 2018; Wang et al., 2024b). Previous epidemio
logical studies have reported that overweight and obese individuals may 
be more vulnerable to air pollution, due to adverse effects on the 
hypothalamic-pituitary-gonadal axis, which may disrupt ovarian folli
culogenesis (Li et al., 2025). Moreover, we observed that women with 
lower education levels were more susceptible to exposure to ambient 
ozone, possibly due to limited access to dietary sources rich in omega-3 
fatty acids and vitamins, such as fish, fresh fruits, and vegetables, which 
may mitigate the adverse effects of air pollution exposure (Romieu et al., 
2005). In addition, individuals with lower education have poorer 
awareness to protect themselves against air pollutants (Zhao et al., 
2024). The association remained robust when we restricted our analysis 
to women with normal AFC.

Potential mechanisms for reduced ovarian reserve include hormone 
disruption, heightened inflammation, oxidative stress, and apoptosis 
(Kan et al., 2008; Luderer et al., 2022; Zhou et al., 2020). Ovarian follicle 
maturation is a tightly regulated developmental process that remains 
particularly vulnerable to environmental toxicants across the repro
ductive lifespan (Wang et al., 2021; Iorio et al., 2014; Jurewicz et al., 
2019). In our study, we observed that exposure to ambient ozone during 
the antral follicles’ development was significantly negatively associated 
with AFC. A plausible explanation is that environmental pollutants can 
induce ovarian toxicity by disrupting meiosis during oocyte formation, 
potentially through genetic or epigenetic alterations. As follicles receive 
growth signals, dormant follicles are recruited from the primordial 
reserve and initiate folliculogenesis, progressing to the antral stage and 
potentially the preovulatory stage (Wang et al., 2024a; McGee and 
Hsueh, 2000; Mínguez-Alarcón et al., 2017; Gallo et al., 2020; Gai et al., 
2017; Møller et al., 2014). When follicles traverse from primary to 
preantral maturation milestones, biological processes including oocyte 
hypertrophy and granulosa population amplification are triggered, 
preceding the peripheral recruitment of theca progenitor cells 
(Rimon-Dahari et al., 2016). Theca cells are responsible for supplying 
blood to the follicles and transporting essential steroids and growth 
factors that facilitate follicular vascularization. However, this vascu
larization may simultaneously provide a pathway for the entry of toxi
cants, which could inhibit granulosa cell proliferation and impair 
follicular development (Yang and Fortune, 2007). Our findings suggest 
that exposure to ambient ozone during this transition is strongly asso
ciated with a reduction in AFC. This may be due to enhanced ozone 
uptake by follicles during vascularization, potentially impairing follic
ular development, accelerating follicle loss, or disrupting ovarian 
function (Hernández-Ochoa et al., 2018). Ozone-induced developmental 
toxicity manifests through redox imbalance and inflammatory cascades, 
mechanistically involving lipid membrane destabilization, genomic 
instability, post-translational protein modifications, and aberrant 
signaling pathway regulation (Loxham et al., 2019; Rivas-Arancibia 
et al., 2015). Taken together, these mechanisms may collectively 
contribute to the observed decline in ovarian reserve associated with 

exposure to ambient ozone.
To our knowledge, this is the first study to report the decreased AFC 

associated with higher exposure to ambient ozone considering both 
short- and long-term exposures, using a large sample size and evaluating 
multiple ovarian reserve biomarkers. However, several limitations in 
our study should be taken into consideration. First, the participants we 
enrolled were from an infertility clinic, which may include sub-fertility 
individuals, potentially limiting generalizability to the broader popu
lation. Nevertheless, our sensitivity analysis restricted to women with 
normal AFC showed consistent results. Second, exposure assessments 
were based on residential address at baseline without accounting for 
indoor pollutants at home and work. However, these exposure mis
classifications tend to bias the findings toward null (Pereira et al., 2016). 
Third, our study population was limited to residing in Sichuan, thus 
multicenter studies are needed to validate our results. Fourth, our study 
focused on longer-term exposure windows to reflect the follicular 
development cycle without considering more acute exposure windows. 
Future studies are warranted to investigate the potential short-term ef
fects of ozone exposure. As the increasing concentration of ambient 
ozone and the decline in ovarian reserve, it is urgent to estimate the 
association between exposure to ambient ozone and ovarian reserve.

5. Conclusion

Among 2815 adult women who attended an infertility clinic in 
China, exposure to ambient ozone was associated with decreased 
ovarian reserve, as marked by AFC. Women with BMI ≥24 kg/m2 and 
those with middle school or lower education may be more susceptible to 
ambient ozone exposure. These findings underscore the need for effec
tive ozone pollution control strategies, particularly for women of 
reproductive age, and suggest that exposure reduction efforts may be 
most beneficial when initiated at least six months before conception 
attempts.
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