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Associations between ambient temperature and mortality 
or morbidity have been studied worldwide.1,2 Both cold 

and hot weather are associated with increased risk of mortal-
ity and morbidity with the minimal risk at an OT. In general, 
cold effects are delayed and last for longer days, whereas heat 
effects seem more acute and followed by harvesting, that is, 
heat affects mainly a pool of frail individuals whose disease 
onset or death is brought forward by a brief period of time.3 
Besides the whole range of temperature being examined, more 
specific attention has been paid to the effects of extreme tem-
perature events, such as cold spells and heat waves.4–8

Although most studies have quantified the association 
with ambient temperature in terms of relative risk (RR), only 
a few studies have assessed the disease burden attributed to 
cold/hot temperatures.9–13 The attributable fraction (AF) repre-
senting the fraction of cases or deaths from a specific disease 
that would be avoided in the absence of exposure to extreme 

weather either in the exposed population or the population as a 
whole. AFs multiplied by the total number of cases of a given 
disease would obtain the absolute number (AN) of prevent-
able cases because of extreme weather. AF and AN quantify 
the public health burden because of specific risk factors for 
specific diseases,14 which has important policy implications 
for future interventions and prevention.

The approaches to assess the disease burden attribut-
able to extreme weather were diverse without considering 
the possible nonlinear and delayed effect of temperature.11–13 
Until recently, Gasparrini et al9,10 introduced an updated 
approach to estimate the attributable risk (AR) based on the 
distributed lag nonlinear model (DLNM) framework with 
consideration of the complex pattern of potentially nonlinear 
and delayed associations described through exposure–lag–
response associations for time series study. Furthermore, no 
study has examined the AR of temperature on the morbidity 
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end points, such as emergency hospitalizations, which was 
considered to better catch the effect of temperature change 
than mortality did.

In this time series ecological study, we aimed to examine 
the nonlinear and delayed association between temperature 
and emergency hospital admissions for circulatory diseases on 
population level, and quantify the risk of emergency hospital-
izations attribute to temperature by calculating the AF and AN 
with extended definition of AR measures based on the DLNM 
framework.

Materials and Methods
Data Collection

Emergency Hospital Admission Data
The daily count of emergency hospital admissions for circulatory 
diseases as the principal diagnosis was obtained from the Hospital 
Authority Corporate Data Warehouse. Hospital Authority is the statu-
tory body running all public hospitals in Hong Kong. The records of 
admission were taken from the publicly funded hospitals providing 24-
hour accident and emergency services and covering 90% of hospital 
beds in Hong Kong.15 For the study period of 2005 to 2012, the Hospital 
Authority provided daily counts of emergency hospital admissions ag-
gregated for age, sex, date of admission, and principal diagnosis on 
discharge. We abstracted the overall daily circulatory emergency hos-
pitalizations (International Classification of Diseases Ninth Revision 
[ICD-9]: 390–459), and some specific causes of circulatory diseases, 
such as ischemic heart disease (IHD, ICD-9: 410–414), acute myocar-
dial infarction (AMI, ICD-9: 410), heart failure (HF, ICD-9: 428), and 
cerebrovascular diseases (stroke, ICD-9: 430–438). Because no studies 
in the literature showed the significant association between the onset of 
overall digestive diseases and ambient temperature, we also abstracted 
the diseases of digestive system (ICD-9: 520–579) as a negative con-
trol. Daily admissions for influenza (ICD-9:487) were used to identify 
influenza epidemics, which were then treated as a potential confounder 
in the analysis.16 Ethics approval and consent from individual subjects 
were not required by our institute because we used only aggregated data 
but not any individualized data. Mortality of the same disease cat-
egories collected from the Census and Statistics Department of Hong 
Kong was also examined as a secondary outcome measure.

WHAT IS KNOWN

s� Associations between ambient temperature and 
cardiovascular mortality and morbidity have been 
studied.

s� However, the risk of cardiovascular disease burden 
attributable to temperature is not known.

WHAT THE STUDY ADDS

s� We assessed the risk attributed to temperature based 
on the distributed lag–nonlinear relationship between 
temperature and circulatory diseases.

s� No effect was detected for hot temperature, but a non-
linear and delayed effect was noted for cold weather.

s� Cold weather was associated with a substantial 
attributable risk for cardiovascular diseases because 
cold temperatures were responsible for temperature-
related circulatory emergency hospitalizations, with 
attributable fraction of 6.33% for moderate cold and 
0.82% for extreme cold.

Temperature and Air Pollution Data
The daily mean temperature and relative humidity from 2005 to 2012 
was obtained from the Hong Kong Observatory. The extreme cold 
was defined as those days with daily mean temperature at or lower 
than the first percentile of its distribution in study period, whereas 
the moderate cold was those with daily mean temperature between 
the first percentile and OT that corresponds to a minimum circulatory 
hospitalization risk. The extreme hot and moderate hot was defined 
using the 99th percentile as the cut-off point.17

Air pollution concentrations in the same period were obtained 
from the Environmental Protection Department of Hong Kong. We 
calculated the daily 24-hour mean concentrations of nitrogen diox-
ide (NO2) and particulate matter with aerodynamic diameter <10 μm 
(PM10) and daytime 8-hour (10:00–17:00) mean concentrations of 
O3 for each general monitoring, and then averaged them across the 
10 stations.18 Air pollutants would be acted as potential time varying 
confounders in the regression models.

Statistical Modeling
This is a time series ecological study on population level. A stan-
dard time series quasi-Poisson regression was applied to derive esti-
mates of associations between temperature and emergency hospital 
admissions for circulatory hospitalizations and each specific cause, 
reported as RR.

The association with temperature was estimated using a DLNM. 
The temperature was included in the model as cross-basis function, 
which can describe complex nonlinear and lagged dependencies 
through the combination of 2 functions that define the conventional 
exposure–response relationship and the additional lag–response rela-
tionship, respectively.19 The DLNM has the advantage of estimating 
cumulative effects of temperature over multiple days while adjusting 
for the collinearity of temperature on neighboring days.20

Specifically, we modeled the exposure–response curve with a 
natural cubic spline with 4 internal knots placed at equal spaces in 
the temperature range to allow for enough flexibility in the 2 ends of 
temperature distribution, and the lag–response curve with a natural 
cubic spline with an intercept and 3 internal knots placed at equally 
spaced values in the log scale to allow more flexible lag effects at 
shorter delays.21 The lag period is extended to 21 days to capture the 
long delay in the effects of cold and adequately assess the hot ef-
fects after excluding emergency hospitalizations advanced only by a 
few days (harvesting effect). The short lags cannot adequately assess 
the hot effects, as the harvesting effects are ignored.21 We included a 
natural cubic spline of time (t) with 8 degrees of freedom per year to 
control for seasonality and long-term trends, a natural cubic spline of 
relative humidity with 3 degrees of freedom, and dummy variables 
for day of the week, public holidays (Holiday), and influenza epidem-
ics (Influenza) to control for these time varying confounders.22 Air 
pollutants (PM10, NO2, and O3) were controlled by including third-
degree constrained polynomial distributed lags with a maximum lag 
of 3 days.23 Autocorrelation of the residuals of the model was checked 
by partial autocorrelation function, which showed no serial autocor-
relations along the lags.24 The model can be specified as follows:
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Here, E(Yt) means the expected daily counts of emergency hos-
pital admission for circulatory diseases on day t; Tempt,l, matrix ob-
tained by applying the DLNM to temperature; β, vector of coefficients 
for Tempt,l; l, the lag days; ns(.), the natural cubic spline function for 
nonlinear variables; df, degrees of freedom; RH, relative humidity; 
DOW, day of the week; and COVs, all time varying covariates.
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The OT, corresponding to a minimum circulatory hospitalization 
risk, was derived from the best linear unbiased prediction of the over-
all cumulative exposure–response association, using a constrained 
segmented distributed lag approach.25,26 The minimum Bayesian in-
formation criterion was suggested to select the threshold, which is 
more probable to meet for segmented models.25 This threshold value 
was used as the reference temperature (centering value) for fitting 
the exposure–lag–response relationship, both in the overall analysis 
and in the stratified analyses in cool and warm season separately. The 
association was then reduced to the overall temperature–circulatory 
hospitalizations relationship, cumulating the risk during the lag pe-
riod. As previous studies indicated that the effects of hot temperatures 
were generally more short term than those from cold temperatures 
while including some harvesting a few days later, besides the cumu-
lative effect during 0 to 21 lag days, we also estimated temperature 
effects during the following lag periods: 0 to 1, 2 to 6, and 7 to 21 to 
represent the acute, delayed, and long-lasting effects, respectively.27 
Because the temperature–mortality or morbidity relationship was 
generally “U” or “J” shaped, we calculated the RRs for cold and hot 
temperatures, respectively. Specifically, we abstracted the RRs for 
circulatory hospitalizations at the first percentile and 10th percentile 
of temperature distribution relative to the OT to represent the effect 
of extreme and moderate cold, and the RRs at the 99th percentile and 
90th percentile relative to the OT to represent the effect of extreme 
and moderate hot, respectively.

Computation of AR
The OT value corresponding to the minimum circulatory hospital-
izations was also considered as the reference to compute the AR by 
centering the natural cubic spline that models the exposure–response 
association. For a specific disease category, the overall cumulative 
RR corresponding to each day’s temperature was used to compute 
the AF and number in the next 21 days, using a backward approach 
described by Gasparrini et al,9 which summarized the current burden 
because of the past exposures. These extended definitions of AR ac-
count for the additional temporal dimension in exposure–response as-
sociations, providing more appropriate attributable measures for the 
cold exposure with potentially complex temporal patterns.

The total attributable number of hospitalizations because of non-
OT is given by the sum of the contributions from all the days of the 
series, and its ratio with the total number of hospitalizations provides 
the total AF. Because the overall hot effect on circulatory hospitaliza-
tions was not detected in Hong Kong, we computed the component 
attributable to cold by summing the subsets corresponding to days 
with temperatures lower than the optimum temperature. It was further 
separated into moderate cold and extreme cold contributions.9,10

Empirical confidence intervals were obtained by Monte Carlo sim-
ulations assuming a multivariate normal distribution of the reduced 
coefficients.9 We derived empirical confidence intervals for total attrib-
utable numbers and fractions, computed overall and separated com-
ponents, by simulating 5000 samples from the assumed distribution.

All analyses were conducted in R statistical environment version 
3.1.3 (R Development Core Team, 2014), with its dlnm package20 to 
fit DLNM to estimate the temperature effect, and modTempEff pack-
age28 to fit constrained segmented distributed lag model to identify 
the threshold temperature where hospitalizations reached minimum. 
The AR (AF and AN) was calculated by function attrdl provided by 
Gasparrini et al.29

Results
During the study period, a total of 521 575 emergency hospi-
tal admissions for circulatory diseases were recorded in Hong 
Kong. On an average, there were 179 emergency circulatory 
hospitalizations per day, of which 35 were IHD, 13 were AMI, 
37 were HF, and 48 were stroke. The daily mean tempera-
ture was 23.4°C with range between 8.7°C and 31.8°C, and 
the relative humidity was 78%. The daily 24-hour mean con-
centration was 50.5 μg/m3 for PM10 and 55.9 μg/m3 for NO2, 
whereas the daytime 8-hour mean concentration of O3 was 
47.1 μg/m3 (Table 1). The time series plot shows the variation 
of daily mean temperature and emergency hospital admissions 
for circulatory diseases and each specific cause: both ambient 

Table 1. Descriptive Statistics of Daily Emergency Hospital Admissions for Circulatory Disease, 
Weather Conditions, and Air Pollution Concentrations in Hong Kong, 2005 to 2012 (2922 Days)

Variables Mean SD

Percentiles

Min. 25th 50th 75th Max.

Daily emergency hospital admissions

  Total circulatory 178.5 30.4 101 156 176 197 319

  Ischemic heart diseases 34.8 8.6 12 29 34 40 79

  Acute myocardial infarction 13.1 5.4 1 9 12 16 38

  Heart failure 37.3 12.5 10 29 35 44 112

  Stroke 48.0 7.8 22 43 48 53 78

  Total digestive diseases 125.0 16.5 72 113 124 136 202

Weather conditions

  Mean temperature,°C 23.4 5.2 8.7 19.1 24.7 27.9 31.8

  Relative humidity, % 78.4 10.5 31.0 74.0 79.0 85.8 99.0

Pollution concentration, μg/m3

  PM10 50.5 28.8 7.6 28.2 45.1 68.1 573.0

  NO2 55.9 19.3 13.0 41.7 53.1 66.9 153.0

  O3 47.1 30.2 4.8 23.2 39.7 64.9 203.2

Max. indicates maximum; Min., minimum; NO2, nitrogen dioxide; O3, ozone; and PM10, particulate matter with aerodynamic 
diameter <10 μm.
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temperature and cardiovascular diseases follow apparent sea-
sonal patterns and long-term trends (Figure 1).

Figure 2 shows the distributed lag–nonlinear relationship 
between temperature and total circulatory diseases, and the 
cumulative effect of temperature >21 lag days, using a natural 
cubic spline DLNM with 4 equal-spaced knots for tempera-
ture and 3 knots for lag. The exposure–lag–response surface 
revealed that the significant cold effect seemed on lag 1 day 
and lasted for 2 to 3 weeks, whereas acute hot effect occurred 
on the current day, followed by harvesting on lag 2 to 4 days 
and approached to null after 1 week. The overall temperature–
hospitalization relationship was reversed ‘J’ shape with sig-
nificant higher risk at low temperature and no apparent risk at 
high temperature.

The OT corresponding to the minimum circulatory hospi-
talizations in Hong Kong was identified as 23.0°C, close to the 
mean temperature in the study period. As indicated in Table 2, 
the temperature’s effects varied by lag periods. The overall 
RRs for extreme and moderate cold temperatures were non-
significant on lag 0 to 1 days; the effects began on lag 2 day 
and generally increased with more lagged days. Compared 
with the OT, the RR during 0 to 21 lag days was 1.69 (95% 
confidence interval, 1.56–1.82) for extreme cold (first per-
centile) and 1.22 (95% confidence interval: 1.15–1.29) for 
moderate cold (10th percentile). The cold effects were stron-
ger for IHD, AMI, and especially for HF, whereas weaker for 

stroke. In contrast, the hot temperature showed some acute 
effects on total circulatory diseases and followed by harvest-
ing. The overall effects of hot temperatures during 0 to 21 lag 
days for circulatory diseases and each subcategory were found 
to be nonsignificant (Table 2). The exposure–response curves 
show the consistent associations between cold and hospital-
izations for all circulatory diseases and each specific cause 
(Figure 3). Mortality as a secondary outcome generated con-
sistent results with the emergency hospitalizations (Figure I 
in the Data Supplement). Further stratified analyses in cool 
and warm seasons separately, which is an alternative approach 
to control for seasonality, also shows consistent significant 
associations in cool seasons but no apparent associations in 
warm seasons (Figures II and III in the Data Supplement). 
We did not observe any significant associations between all 
digestive diseases and both cold and hot temperatures. At the 
same time, the significant associations with air pollution were 
found in modified models, as the standard time series air pol-
lution studies have been done previously.30 (Table I in the Data 
Supplement).

The OT was also used as the reference point for the com-
putation of the AR measures. Table 3 provides estimates of the 
AF and AN for total circulatory diseases and specific subcat-
egories that attributed to cold temperature, with the compo-
nents attributed to extreme cold and moderate cold separately. 
The comparison of the 2 contributions clearly indicates that 

10
15
20
25
30

100
150
200
250
300

20

40

60

80

0

10

20

30

30

60

90

20

40

60

80

100

150

200

temp

cir

ihd

ami

hf

stroke

dgs

2005 2006 2007 2008 2009 2010 2011 2012 2013
Study Period

Figure 1. Time series plots for daily mean temperature (Temp, °C) and emergency hospitalizations (counts/d) for all circulatory diseases 
(CIR), ischemic heart disease (IHD), acute myocardial infarction (AMI), heart failure (HF), stroke, and all digestive diseases (DGS).
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moderate cold is responsible for the major part of the tem-
perature associated circulatory hospitalizations, with the 
AF=6.33% for moderate cold and 0.82% for extreme cold 
while inducing 33 030 and 4257 cases during the 8 years’ 
study period, respectively. Among the specific causes of cir-
culatory diseases, AMI, HF, and IHD showed the higher risk 
of hospitalization attributed to cold temperature, with AF 
of 10.1% to 12.6% for moderate cold and 1.1% to 1.7% for 
extreme cold. The risk attributed to cold for stroke was less 
pronounced (Table 3).

Discussion
In this study, we examined the nonlinear delayed association 
between ambient temperature and emergency hospital admis-
sions for circulatory diseases and assessed the risk attributed 
to cold temperature. We observed significant positive effect of 
cold started on lag 2 day and lasted for 3 weeks. The hot effect 
was acute on lag 0 day, followed by harvesting and led to a 
null cumulative effect during 2 to 3 weeks. Hospitalization 
risk for cardiovascular diseases attributed to temperature was 
main because of the cold, and moderate cold was responsible 
for the major part of the AF and number of hospitalizations. 
Specific diseases such as AMI, HF, and IHD showed higher 
susceptibility to cold temperature exposure.

The association between cold temperature and CVD mor-
bidity has been well documented in the literature.2 Although 
the effect estimates were heterogeneous across geographical 
locations, the main finding was consistent as delayed and lon-
ger cold effects for ≤2 to 3 weeks. In this study, we observed 
similar exposure-lag–response relationship between cold and 
emergency CVD hospitalizations, and added to the literature 
the higher RRs for AMI, HF, and IHD. The associations with 
air pollutants were also estimated with the standard model30 
and presented in the in the Data Supplement for reference.

Biological processes underlying the cold-related morbid-
ity has been explored. Exposure to cold would associate with 
cardiovascular stress by affecting blood pressure and plasma 
fibrinogen, increasing thrombosis, vasoconstriction and blood 
viscosity, and inflammatory responses.31,32 These physi-
ological responses can persist for longer than those effects 
from heat,32 and seem to produce hospitalization risk after a 

persistent response, so that the most of the AR occurred on 
moderately cold days.

The effect of hot temperatures on emergency hospital 
admissions for CVD was reported widely in regions2,4,12; how-
ever, we did not observe the positive associations between hot 
temperature and CVD in this study. The results were consistent 
with a previous study in Vietnam, which reported the nonsig-
nificant association between hot temperature and CVD hospi-
tal admissions.33 Even though some acute hot effect on lag 0 to 
1 days was significant for stroke, the cumulative effect of hot 
temperature >1 week and longer period disappeared because 
of the harvesting. Hong Kong is a subtropical city located 
on the southern coast of China with hot and humid summer, 
whereas the mean temperature in summer (May to October) 
was 27.8°C, ranging between 18.7°C and 31.8°C. Although 
the mean temperature in summer was higher than the optimum 
for 98% of days, we did not find significant hot temperature 
effect for CVD and stroke hospitalizations, which may prob-
ably because of the population adaptation, high prevalence of 
air conditioner usage, and fewer outdoor activities. A previ-
ous study revealed that heat-related mortality declined and the 
population had become resilient to heat over time, especially 
in the elderly subjects >75 years of age.34 High prevalence of 
air conditioner usage was also linked to the decreased extreme 
hot–related mortality or morbidity.35

Harvesting is the phenomenon that arises when a stressor 
affects mainly a pool of frail individuals, whose events are only 
brought forward by a brief period of time by the exposure.36 
Evidence of harvesting effect of hot temperature on mortal-
ity displacement has been well documented37–39; however, the 
impact of harvesting on morbidity has not been fully investi-
gated. Schwartz et al3 reported similar evidence of a short-term 
advance in emergency hospital admissions for heart diseases 
and myocardial infarction among people >65 years of age 
within a few days after hot temperature exposure, with a posi-
tive association on the day of admission followed by a period 
of lower-than-average admissions, returning to the baseline 
after a week. The temporal pattern for the effect of high tem-
peratures suggested harvesting effects, whereas no evidence 
of harvesting effect was observed for cold weather for heart 
diseases, which was consistent with the findings in this study.
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AF and AN quantify the disease burden because of specific 
risk factors for specific diseases, which has important public 
health implications pointing to the potential impact of an inter-
vention or prevention.14 In this study, we calculated AF and AN 
with extended definition of AR measures based on the DLNM 
framework. Results revealed that cold is mainly responsible for 
the temperature-related circulatory hospitalizations in Hong 
Kong, with 7.15% of total emergency circulatory hospitaliza-
tions attributed to cold. The AFs for moderate cold for specific 
causes of circulatory diseases were 7× to 9× of those for extreme 
cold. Most of the hospitalizations were in fact attributable to 
moderate cold in spite of the relatively lower RR compared with 
that of extreme cold, which may be explained that moderate 
temperature range included the majority of the days in the series.

The weather-warning system has been implemented in 
Hong Kong to alert the public for the dangers of extreme 
weather conditions.40 The present assessment suggests 
that implemented public health policies and interventions 

specifically designed for extreme weather conditions should 
be extended to consider the effects associated with cold tem-
perature, and focused on the susceptible subpopulations.

The strength of this study is the application of updated 
flexible statistical model to characterize the temperature–
hospitalization association and identified the OT. This is the 
first study to assess the AR of cold temperature on emergency 
circulatory hospitalizations, based on its nonlinear delayed 
relationship, and separated the attributable components into 
contributions from extreme and moderate cold temperatures. 
Meanwhile, some limitations should be noted. As in all other 
time series studies, personal exposure data were not available. 
The outdoor monitoring data were used to represent the popu-
lation exposure to ambient temperature, which may induce 
exposure misclassifications. A study conducted in Greater 
Boston reported that the relationship between indoor and out-
door ambient temperature was different, with strong correla-
tion only at warmer outdoor temperatures but weak correlation 

Table 2. RR of Cold and Hot Temperatures on Emergency Hospital Admissions for Circulatory Diseases and 
Subcategories Over Multiple Lag Days in Hong Kong, 2005 to 2012 (RR With 95% CI)

Diseases Lag Days Extreme Cold* Moderate Cold† Moderate Hot‡ Extreme Hot§

All CIR 0–1 0.98 (0.95–1.01) 0.97 (0.95–0.99) 1.04 (1.01–1.06) 1.04 (1.01–1.07)

2–6 1.25 (1.21–1.29) 1.10 (1.08–1.13) 0.93 (0.91–0.96) 0.92 (0.89–0.94)

7–21 1.38 (1.30–1.47) 1.14 (1.09–1.18) 0.98 (0.94–1.03) 0.97 (0.92–1.02)

0–21 1.69 (1.56–1.82) 1.22 (1.15–1.29) 0.95 (0.89–1.01) 0.92 (0.86–0.99)

IHD 0–1 0.92 (0.87–0.98) 0.96 (0.92–1.00) 1.05 (1.00–1.11) 1.05 (0.99–1.12)

2–6 1.39 (1.30–1.48) 1.17 (1.12–1.23) 0.92 (0.87–0.97) 0.90 (0.85–0.96)

7–21 1.63 (1.44–1.83) 1.24 (1.14–1.35) 0.96 (0.87–1.06) 0.96 (0.86–1.06)

0–21 2.08 (1.76–2.45) 1.39 (1.24–1.56) 0.93 (0.82–1.06) 0.90 (0.78–1.05)

AMI 0–1 0.99 (0.91–1.09) 0.97 (0.90–1.03) 1.02 (0.94–1.11) 1.04 (0.94–1.14)

2–6 1.48 (1.35–1.64) 1.22 (1.13–1.31) 0.93 (0.85–1.01) 0.92 (0.83–1.01)

7–21 1.62 (1.33–1.97) 1.27 (1.11–1.46) 1.04 (0.89–1.21) 1.03 (0.86–1.23)

0–21 2.38 (1.83–3.10) 1.49 (1.24–1.80) 0.99 (0.80–1.22) 0.98 (0.77–1.25)

HF 0–1 0.96 (0.91–1.01) 0.91 (0.88–0.95) 1.04 (0.98–1.09) 1.01 (0.95–1.08)

2–6 1.39 (1.31–1.48) 1.18 (1.12–1.23) 0.87 (0.82–0.92) 0.85 (0.80–0.91)

7–21 1.95 (1.75–2.19) 1.33 (1.23–1.45) 0.99 (0.90–1.09) 1.03 (0.92–1.15)

0–21 2.61 (2.24–3.04) 1.43 (1.28–1.60) 0.89 (0.78–1.02) 0.89 (0.76–1.03)

Stroke 0–1 1.00 (0.95–1.05) 0.99 (0.95–1.02) 1.04 (1.00–1.09) 1.07 (1.01–1.12)

2–6 1.17 (1.11–1.24) 1.05 (1.01–1.09) 0.97 (0.92–1.01) 0.95 (0.90–1.00)

7–21 1.13 (1.02–1.26) 1.05 (0.98–1.13) 0.95 (0.88–1.03) 0.90 (0.82–0.98)

0–21 1.33 (1.15–1.53) 1.09 (0.99–1.20) 0.96 (0.86–1.07) 0.91 (0.80–1.02)

Digestive 0–1 0.93 (0.90–0.96) 0.98 (0.95–1.00) 1.04 (1.01–1.07) 1.04 (1.01–1.08)

2–6 1.09 (1.05–1.13) 1.04 (1.01–1.07) 0.98 (0.95–1.01) 0.98 (0.95–1.01)

7–21 1.06 (0.99–1.14) 1.01 (0.96–1.06) 1.02 (0.97–1.07) 1.02 (0.97–1.08)

0–21 1.08 (0.98–1.18) 1.03 (0.96–1.10) 1.04 (0.97–1.11) 1.05 (0.97–1.13)

AMI indicates acute myocardial infarction; CI, confidence interval; CIR, circulatory disease; HF, heart failure; IHD, ischemic heart 
disease; and RR, relative risk.

*The first percentile of temperature (11.2°C), compared with the optimal temperature at 23.0°C.
†The 10th percentile of temperature (15.8°C), compared with the optimal temperature at 23.0°C.
‡The 90th percentile of temperature (29.4°C), compared with the optimal temperature at 23.0°C.
§The 99th percentile of temperature (30.6°C), compared with the optimal temperature at 23.0°C.
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at cooler temperatures.41 But for the subtropical city of Hong 
Kong with high prevalence of air conditioner usage in summer 
but low prevalence of house heating in winter, the situation 
may be opposite. Outdoor fixed site measurement for ambi-
ent temperature may represent the average population expo-
sure better in cool season than in hot season in Hong Kong. 
Another limitation was that we only include emergency hospi-
tal admissions for circulatory diseases but did not capture the 
less severe cases. However, the emergency hospitalizations 
could be assumed as less being influenced by health-seeking 
behaviors and were considered to be more sensitive and better 
reflect the acute effect of temperature change than mortality 
did. Finally, caution is warranted when the findings of this 

single-city study are generalized to other places with different 
climates and population characteristics.

Conclusions
We observed significant nonlinear and delayed effect of cold 
temperature on emergency circulatory hospitalizations in this 
study. The OT corresponding to the minimum circulatory hos-
pitalizations was 23.0°C in Hong Kong. Extreme cold weather 
showed a higher RR while moderate cold weather was respon-
sible for a considerable fraction and number of emergency 
circulatory hospitalizations. Public health policies and preven-
tions should consider the temperature-related hospitalizations 
risk on susceptible subpopulations.
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Figure 3. The cumulative effect of temperature >21 lag days on emergency hospital admissions for all circulatory diseases and the 
specific causes. The dotted and dashed lines show the first percentile (11.2°C) and the optimal temperature (23.0°C), respectively. 
All digestive disease was used as a negative control. AMI indicates acute myocardial infarction; HF, heart failure; IHD, ischemic heart 
disease; and RR, relative risk.

Table 3. Attributable Risk of Temperature on Emergency Hospitalizations for Circulatory Diseases, Contributing 
to Extreme and Moderate Cold Temperatures With 95% Empirical Confidence Intervals, 2005 to 2012

Subgroup Total No.*

Extreme Cold† Moderate Cold‡

AF (%) AN AF (%) AN

Total circulatory 521 575 0.82 (0.69–0.94) 4257 (3604–4922) 6.33 (4.72–7.75) 33 030 (24 465–40 510)

 IHD 101 548 1.14 (0.87–1.39) 1157 (898–1429) 10.11 (7.27–12.76) 10 264 (7076–13 136)

 AMI 38 292 1.44 (0.99–1.83) 552 (387–705) 12.56 (8.1–16.81) 4809 (2966–6424)

 HF 108 961 1.74 (1.44–2.04) 1899 (1578–2199) 11.47 (7.81–14.51) 12 501 (8903–15 727)

 Stroke 140 358 0.45 (0.24–0.64) 628 (307–905) 3.3 (0.42–5.93) 4638 (373–8092)

AF indicates attributable fraction; AMI, acute myocardial infarction; HF, heart failure; and AN, attributable number.
*Total emergency hospital admissions for each disease category during the study period.
†Extreme cold was defined as those days with temperature at or lower than the first percentile of distribution.
‡Moderate cold was defined as those days with temperature range between the first percentile (11.2°C) and 23.0°C (the optimum).
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SUPPLEMENTAL MATERIAL 

Supplemental Methods 

CVD mortality as a secondary outcome measure 

CVD mortality of the same disease categories as a secondary outcome measure was examined. 
We used the same approach that descripted in the main text 1,2 to identify the optimal 
temperature for CVD mortality, which was 26oC in Hong Kong and a little different from that for 
CVD hospitalizations (23oC). The exposure-lag-response relationship between ambient 
temperature and CVD mortality was examined using distributed lag non-linear model 3. Figure-
S1 below provides the consistent results with the emergency CVD hospitalizations. 

Stratified analyses by season 

Exposure-response relationships between ambient temperature and emergency CVD 
hospitalizations were estimated in cool seasons (November to April) and in warm seasons (May 
to October) separately. Stratified analyses by season were considered as an alternative 
approach to well control the seasonality. Figure-S2 and S3 below show the consistent 
significant associations in cool seasons but no apparent associations in warm seasons, the same 
as what we have found using the whole period data for analyses. 

Association with air pollution 

The associations between air pollution and emergency CVD hospitalizations were estimated 
using the same available data. 

In the main text of the manuscript, we examined the emergency CVD hospitalizations risk 
attributed to ambient temperature. We extended the lag period to 21 days in order to capture 
the long delay in the effects of cold and adequately assess the hot effects while considering the 
harvesting effect 4. We also adjusted for air pollution as the time-varying confounders and put 
PM10, NO2 and O3 in the model simultaneously to get the most conservative effect estimates for 
temperature 5. However in these model specifications, the true effects of air pollutants would 
be underestimated due to the probably over-adjustment of ambient temperature. 

To examine the effect estimates for air pollutants, we modified the statistical model used in the 
main text with the adjustment for the confounding effect of temperature in 0-3 lags (the mean 
temperature of current day, Temp0, and the moving average of previous 3 days, Temp1-3), as 
the standard air pollution time series studies have been done previously 6.  

The model specifications are as follows: 
log(E(Y)) = ɲ н ɴ*Pollutant + ns(t, df=8/year × no. of years)  
                       + ns(Temp0, df=6) + ns(Temp1-3, df=6) + ns(RH, df=3) 

                           + ɴ1*DOW + ɴ2*Holiday н ɴ3*Influenza 

                    с ɲ н ɴ*Pollutant + COVs 
 



2 
 

Here E(Y) means the expected daily counts of emergency hospital admission for circulatory 
diseases on day t; ns(.) is the natural cubic spline function for nonlinear variables. Each 
pollutant was included in the model in third-degree constrained polynomial distributed lags 
with a maximum lag of 3 days, and presented as cumulative effect over 0-3 lag days. 

 

Supplemental Tables 

We found the statistically significant associations between emergency hospitalizations for all 
circulatory diseases, IHD, HF and PM10, NO2 and O3. And the association between AMI and NO2 
was also found. We did not observe the significant effect of air pollution on stroke. (Table-S1) 
 

Table-S1 The associations (RR (95%CI) per 10µg/m3 increase of each pollutant) between air 
pollution and CVD hospitalizations* 

 PM10 NO2 O3 

All Circulatory 1.003 (1.000, 1.005) 1.012 (1.008, 1.015) 1.003 (1.001, 1.005) 

    IHD 1.007 (1.003, 1.012) 1.017 (1.011, 1.024) 1.007 (1.002, 1.011) 

    AMI 1.006 (0.998, 1.013) 1.013 (1.003, 1.024) 1.001 (0.994, 1.008) 

    HF 1.008 (1.004, 1.013) 1.022 (1.015, 1.029) 1.009 (1.004, 1.013) 

   Stroke 0.996 (0.993, 1.000) 1.004 (0.998, 1.009) 0.999 (0.995, 1.002) 

       *: Generalized linear Poisson regression model and DLNM was used to estimate the cumulative 
effect of each pollutant distributed over 0-3 lag days in single-pollutant model, after adjusting for the 
time trend, seasonality, meteorological factors, calendar effect and influenza epidemics. 

 

Supplemental Figures and Figure Legends: 
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Figure-S1 The cumulative effect of temperature over 21 lag days on circulatory mortality and four 
specific categories. The dotted and dashed lines show the 1st percentile (11.2oC) and the optimal 

temperature (26.0oC), respectively. The digestive mortality is used as the negative control. 
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Figure-S2 The cumulative effect of temperature over 21 lag days on CVD hospitalizations in cool 
seasons. The dotted and dashed lines show the 1st percentile (11.2oC) and the optimal temperature 

(23.0oC), respectively. All digestive disease was used as a negative control. 

 

Figure-S3 The cumulative effect of temperature over 21 lag days on CVD hospitalizations in warm 
seasons. The optimal temperature (23.0oC) was used as the reference value and all digestive disease 

was used as a negative control. 
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