Analysis of Gestational Weight Gain During the COVID-19 Pandemic in the US

Wangnan Cao, PhD; Shengzhi Sun, PhD; Valery A. Danilack, MPH, PhD

Introduction

The COVID-19 pandemic has been associated with weight gain among adults, children, and adolescents, ${ }^{1,2}$ but little is known about gestational weight gain (GWG) among pregnant individuals. Gestational weight gain is associated with important health implications for parents and offspring, and excessive GWG is associated with adverse pregnancy outcomes. ${ }^{3}$ We estimated changes in GWG among individuals giving birth to live infants during the COVID-19 pandemic in the US.

Methods

In this cross-sectional study, we obtained data on all live births in the US from January 1, 2018, to December 31, 2020, from the National Center for Health Statistics of the Centers for Disease Control and Prevention. Data analysis was performed from January 1, 2022, to July 15, 2022. We restricted our analyses to singleton births to residents and excluded births with missing gestational age, GWG, and body mass index (BMI; calculated as weight in kilograms divided by height in meters squared) before pregnancy. Gestational weight gain was calculated by subtracting weight before pregnancy from the delivery weight. To examine vulnerable racial and ethnic groups, race and ethnicity were categorized on the basis of US birth certificate questionnaires as Hispanic, non-Hispanic Asian or non-Hispanic Pacific Islander, non-Hispanic Black, non-Hispanic White, and other race or ethnicity (including non-Hispanic American Indian or Alaskan Native, non-Hispanic with more than 1 race, and unknown or undisclosed race or ethnicity). Patient consent was waived because the study involved analysis of deidentified publicly available data and was deemed non-human participant research by the institutional review board at the Capital Medical University. This study followed the STROBE reporting guideline.

We defined the COVID-19 pandemic period as March 1 to December 31, 2020. We defined dichotomous excessive GWG as weight gain above the BMI-specific Institute of Medicine recommendations. ${ }^{4}$ We used linear regression or logistic regression to compare the GWG (continuous outcome) or excessive GWG (dichotomous outcome) among patients whose infants were born during the pandemic period vs the analogous period in 2019 (ie, referent period) after excluding prepandemic trends in GWG by comparing GWG or excessive GWG during the referent period in 2019 vs 2018 (eAppendix in the Supplement). We adjusted for gestational age, maternal age, educational attainment, race and ethnicity, marital status, adequacy of prenatal care utilization index, BMI before pregnancy, and source of delivery payment. Analyses were performed in R software, version 3.6.1 (R Foundation for Statistical Computing). A 2-sided $P<.05$ was considered statistically significant.

Results

Our analysis included 2847592 singleton births in 2020 (mean [SD] GWG, 13.31 [6.85] kg), 2475822 in 2019 (mean [SD] GWG, 13.28 [6.84] kg), and 2847592 in 2018 (mean [SD] GWG, 13.31 [6.85] kg)
(Table 1). After adjusting for covariates and excluding prepandemic trends in GWG, we observed an increase of $0.06 \mathrm{~kg}(95 \% \mathrm{Cl}, 0.04-0.07 \mathrm{~kg})$ in GWG, with pronounced increases among pregnant

[^0][^1]Table 1. Changes in Gestational Weight Gain (GWG) Before and During the COVID-19 Pandemic by Maternal Characteristics

Maternal characteristic	Prepandemic year 2018		Prepandemic year 2019		Pandemic year 2020		Adjusted changes in GWG, mean ($95 \% \mathrm{CI}$), $\mathrm{kg}^{\text {a }}$		Net change during pandemic, mean ($95 \% \mathrm{Cl}$), kg ${ }^{\text {b }}$
	No. (\%)	GWG, mean (SD), kg	No. (\%)	GWG, mean (SD), kg	No. (\%)	GWG, mean (SD), kg	2019 vs 2018	2020 vs 2019	
Total	2475822 (100)	13.28 (6.85)	2486122 (100)	13.26 (6.84)	2847592 (100)	13.31 (6.85)	0.03 (0.02 to 0.05)	0.09 (0.08 to 0.10)	0.06 (0.04 to 0.07)
Age, y									
<25	597905 (24.1)	13.60 (7.31)	589056 (23.7)	13.59 (7.30)	652564 (22.9)	13.81 (7.36)	0.04 (0.01 to 0.07)	0.26 (0.24 to 0.29)	0.22 (0.19 to 0.26)
25-29	722167 (29.2)	13.24 (6.91)	718612 (28.9)	13.24 (6.91)	808139 (28.4)	13.28 (6.91)	0.06 (0.03 to 0.08)	0.09 (0.07 to 0.11)	0.03 (0 to 0.06)
30-34	713137 (28.8)	13.29 (6.54)	722169 (29.0)	13.26 (6.53)	844536 (29.7)	13.23 (6.53)	0.01 (-0.01 to 0.03)	0.01 (-0.01 to 0.03)	0 (-0.03 to 0.03)
≥ 35	442613 (17.9)	12.91 (6.59)	456285 (18.4)	12.89 (6.56)	542353 (19.0)	12.87 (6.56)	0.02 (0 to 0.05)	0 (-0.03 to 0.02)	-0.02 (-0.06 to 0.01)
Educational attainment									
High school or less	937032 (37.8)	12.76 (7.31)	939208 (37.8)	12.73 (7.30)	$\begin{aligned} & 1071703 \\ & (37.7) \end{aligned}$	12.86 (7.34)	0.03 (0.01 to 0.05)	0.19 (0.17 to 0.21)	0.16 (0.13 to 0.19)
Some college	492995 (19.9)	13.32 (7.23)	485850 (19.5)	13.33 (7.24)	539398 (18.9)	13.45 (7.25)	0.08 (0.05 to 0.10)	0.17 (0.15 to 0.20)	0.10 (0.06 to 0.14)
Associate's degree	207092 (8.4)	13.38 (6.84)	207219 (8.3)	13.35 (6.84)	237831 (8.4)	13.39 (6.86)	0.04 (0.00 to 0.08)	0.09 (0.05 to 0.13)	0.05 (-0.01 to 0.10)
Bachelor's degree	505845 (20.4)	13.84 (6.10)	511813 (20.6)	13.82 (6.08)	600393 (21.1)	13.75 (6.10)	0.01 (-0.01 to 0.04)	-0.04 (-0.07 to -0.02)	-0.06 (-0.09 to -0.02)
Master's degree or higher	302663 (12.2)	13.93 (5.76)	308812 (12.4)	13.89 (5.75)	362104 (12.7)	13.73 (5.77)	0.00 (-0.03 to 0.02)	-0.14 (-0.17 to -0.12)	-0.14 (-0.18 to -0.10)
Unknown	30195 (1.2)	12.43 (6.53)	33220 (1.3)	12.41 (6.52)	36163 (1.3)	12.42 (6.63)	0.02 (-0.08 to 0.12)	0.14 (0.05 to 0.23)	0.12 (-0.02 to 0.25)
Race or ethnicity									
Hispanic	563214 (22.7)	12.31 (6.61)	581543 (23.4)	12.30 (6.55)	686707 (24.1)	12.40 (6.58)	0.04 (0.02 to 0.06)	0.12 (0.10 to 0.14)	0.08 (0.05 to 0.11)
Non-Hispanic Black	359741 (14.5)	12.62 (7.61)	363839 (14.6)	12.63 (7.60)	408663 (14.4)	12.75 (7.57)	0.05 (0.02 to 0.08)	0.17 (0.14 to 0.20)	0.12 (0.07 to 0.16)
Non-Hispanic White	1299100 (52.5)	13.98 (6.76)	1284053 (51.6)	13.96 (6.77)	$\begin{aligned} & 1459631 \\ & (51.3) \end{aligned}$	13.98 (6.78)	0.02 (0.00 to 0.03)	0.05 (0.04 to 0.07)	0.04 (0.01 to 0.06)
Other ${ }^{\text {c }}$	96865 (3.9)	13.46 (7.31)	98515 (4.0)	13.47 (7.31)	111782 (3.9)	13.64 (7.41)	0.07 (0.01 to 0.13)	0.22 (0.16 to 0.28)	0.15 (0.06 to 0.23)
Marital status									
Married	1256522 (50.8)	13.38 (6.48)	1257871 (50.6)	13.36 (6.46)	$\begin{aligned} & 1496696 \\ & (52.6) \end{aligned}$	13.32 (6.43)	0.02 (0.01 to 0.04)	0.01 (-0.01 to 0.02)	-0.01 (-0.04 to 0.01)
Unmarried	858511 (34.7)	13.39 (7.54)	874752 (35.2)	13.35 (7.55)	$\begin{aligned} & 1019932 \\ & (35.8) \end{aligned}$	13.46 (7.57)	0.03 (0.01 to 0.06)	0.20 (0.18 to 0.22)	0.16 (0.13 to 0.19)
Unknown	360789 (14.6)	12.71 (6.37)	353499 (14.2)	12.71 (6.26)	330964 (11.6)	12.76 (6.32)	0.07 (0.04 to 0.09)	0.12 (0.09 to 0.14)	0.05 (0.01 to 0.09)
APNCU index ${ }^{\text {d }}$									
Inadequate	330942 (13.4)	12.20 (7.35)	336462 (13.5)	12.18 (7.33)	386160 (13.6)	12.29 (7.31)	0.05 (0.02 to 0.09)	0.14 (0.11 to 0.17)	0.09 (0.04 to 0.14)
Intermediate	76071 (3.1)	12.78 (6.94)	73084 (2.9)	12.74 (6.92)	115526 (4.1)	12.91 (6.80)	0.03 (-0.04 to 0.10)	0.15 (0.09 to 0.21)	0.13 (0.03 to 0.22)
Adequate	313184 (12.6)	13.46 (6.67)	307518 (12.4)	13.40 (6.66)	419867 (14.7)	13.51 (6.62)	0.01 (-0.03 to 0.04)	0.12 (0.09 to 0.15)	0.12 (0.07 to 0.16)
Adequate plus	1698163 (68.6)	13.49 (6.74)	1714243 (69.0)	13.47 (6.73)	$\begin{aligned} & 1863179 \\ & (65.4) \end{aligned}$	13.50 (6.77)	0.03 (0.02 to 0.05)	0.07 (0.06 to 0.08)	0.04 (0.02 to 0.06)
Unknown	57462 (2.3)	13.23 (7.41)	54815 (2.2)	13.26 (7.33)	62860 (2.2)	13.22 (7.36)	0.11 (0.02 to 0.19)	0.00 (-0.08 to 0.08)	-0.11 (-0.23 to 0.01)
BMI before pregnancy									
Underweight (<18.5)	81528 (3.3)	15.10 (6.16)	78554 (3.2)	15.18 (6.18)	83528 (2.9)	15.11 (6.28)	0.10 (0.04 to 0.16)	-0.07 (-0.13 to -0.01)	-0.17 (-0.26 to -0.09)
Normal weight (18.5-24.9)	1051356 (42.5)	14.72 (6.00)	1030093 (41.4)	14.71 (6.00)	$\begin{aligned} & 1157553 \\ & (40.7) \end{aligned}$	14.71 (6.03)	0.01 (0.00 to 0.03)	0.01 (-0.01 to 0.02)	-0.01 (-0.03 to 0.02)
Overweight (25.0-29.9)	657042 (26.5)	13.48 (6.91)	666751 (26.8)	13.51 (6.86)	770820 (27.1)	13.58 (6.86)	0.04 (0.02 to 0.07)	0.09 (0.07 to 0.11)	0.04 (0.01 to 0.08)
Obesity (≥ 30)	685896 (27.7)	10.67 (7.33)	710724 (28.6)	10.72 (7.29)	835691 (29.3)	10.93 (7.30)	0.05 (0.02 to 0.07)	0.22 (0.20 to 0.24)	0.17 (0.14 to 0.21)

Table 1. Changes in Gestational Weight Gain (GWG) Before and During the COVID-19 Pandemic by Maternal Characteristics (continued)

Maternal characteristic	Prepandemic year 2018		Prepandemic year 2019		Pandemic year 2020		Adjusted changes in GWG, mean ($95 \% \mathrm{CI}$), kg^{a}		Net change during pandemic, mean ($95 \% \mathrm{CI}$), $\mathrm{kg}^{\text {b }}$
	No. (\%)	GWG, mean (SD), kg	No. (\%)	GWG, mean (SD), kg	No. (\%)	GWG, mean (SD), kg	2019 vs 2018	2020 vs 2019	
Payment source for delivery									
Medicaid	1034348 (41.8)	12.87 (7.38)	1031578 (41.5)	12.84 (7.36)	$\begin{aligned} & 1179455 \\ & (41.4) \end{aligned}$	12.99 (7.38)	0.04 (0.02 to 0.06)	0.21 (0.19 to 0.23)	0.17 (0.15 to 0.20)
Private insurance	1235811 (49.9)	13.69 (6.40)	1251825 (50.4)	13.67 (6.40)	$\begin{aligned} & 1443554 \\ & (50.7) \end{aligned}$	13.61 (6.41)	0.03 (0.02 to 0.05)	-0.02 (-0.04 to -0.01)	$-0.05(-0.08$ to -0.03$)$
Self-pay	99501 (4.0)	12.42 (6.31)	102183 (4.1)	12.39 (6.33)	108310 (3.8)	12.52 (6.33)	0.03 (-0.02 to 0.08)	0.13 (0.08 to 0.19)	0.11 (0.03 to 0.18)
Other	95451 (3.9)	13.40 (6.76)	88249 (3.5)	13.42 (6.75)	97904 (3.4)	13.58 (6.82)	0.01 (-0.05 to 0.07)	0.19 (0.13 to 0.24)	0.18 (0.09 to 0.26)
Unknown	10711 (0.4)	13.50 (7.28)	12287 (0.5)	13.45 (7.00)	18369 (0.6)	13.47 (7.08)	-0.04 (-0.21 to 0.14)	0.09 (-0.06 to 0.25)	0.13 (-0.11 to 0.36)
Gestational age, wk									
Very and moderate preterm (<35)	67214 (2.7)	10.32 (7.00)	70351 (2.8)	10.38 (6.95)	76994 (2.7)	10.42 (6.99)	0.10 (0.03 to 0.17)	0.08 (0.01 to 0.16)	-0.02 (-0.12 to 0.09)
Late preterm (35-36)	179705 (7.3)	12.22 (7.00)	190637 (7.7)	12.25 (6.98)	214568 (7.5)	12.30 (7.02)	0.08 (0.03 to 0.12)	0.12 (0.07 to 0.16)	0.04 (-0.02 to 0.10)
Term (37-41)	2105914 (85.1)	13.45 (6.79)	2100087 (84.5)	13.43 (6.78)	$\begin{aligned} & 2410281 \\ & (84.6) \end{aligned}$	13.47 (6.78)	0.03 (0.01 to 0.04)	0.08 (0.07 to 0.10)	0.06 (0.04 to 0.08)
Postterm (>41)	122989 (5.0)	13.66 (7.17)	125047 (5.0)	13.64 (7.11)	145749 (5.1)	13.66 (7.12)	0.07 (0.01 to 0.12)	0.12 (0.06 to 0.17)	0.05 (-0.02 to 0.12)

 from initiation of care until delivery. It is categorized into 4 levels: inadequate care is defined as starting prenatal care after the fourth month of pregnancy or receiving less than 50% of expected visits based on the schedule of
prenatal care visits recommended by the American College of Obstetricians and Gynecologists; intermediate care is care begun by month 4 with 50% to 79% of expected visits received; adequate care is begun by month 4 with 80% to 109% of expected visits received; and adequate plus care is begun by month 4 with 110% or more of expected visits received.
We mutually adjusted all variables in the table in
${ }^{\text {b }}$ Net changes during the pandemic were calculated as GWG for 2020 vs 2019 minus GWG for 2019 vs 2018, and the corresponding 95% CIs were calculated as the square root of the sum of the squares of the separate SEs. Includes non-Hispanic American Indian or Alaskan Native, non-Hispanic with more than 1 race, and unknown or undisclosed race or ethnicity.

Table 2. Changes in Risk of Excessive Gestational Weight Gain Before and During the COVID-19 Pandemic
by Maternal Characteristics 0 OR ($95 \% \mathrm{Cl})^{\text {b }} \quad P$ value

Maternal characteristic	OR (95\% CI) ${ }^{\text {b }}$		Ratio of OR (95\% CI) ${ }^{\text {c }}$	P value for effect modification ${ }^{\text {d }}$
	2019 vs 2018	2020 vs 2019		
Total	1.01 (1.00-1.01)	1.02 (1.01-1.02)	1.01 (1.01-1.02)	NA
Age, y				
<25	1.01 (1.00-1.02)	1.06 (1.05-1.07)	1.05 (1.04-1.06)	[Reference]
25-29	1.01 (1.02-1.02)	1.02 (1.01-1.03)	1.01 (1.00-1.02)	<. 001
30-34	1.00 (1.0-1.01)	1.00 (0.99-1.01)	1.00 (0.99-1.01)	<. 001
≥ 35	1.00 (0.99-1.01)	0.99 (0.98-1.00)	0.99 (0.98-1.00)	<. 001
Educational attainment				
High school or less	1.01 (1.00-1.02)	1.04 5(1.04-1.05)	1.03 (1.03-1.04)	[Reference]
Some college	1.01 (1.00-1.02)	1.05 (1.04-1.05)	1.03 (1.02-1.04)	. 78
Associate's degree	1.01 (0.10-1.02)	1.02 (1.01-1.04)	1.01 (1.00-1.03)	. 04
Bachelor's degree	1.00 (0.99-1.01)	0.98 (0.97-0.99)	0.98 (0.97-0.99)	<. 001
Master's degree or higher	1.00 (0.98-1.01)	0.95 (0.94-0.96)	0.96 (0.94-0.97)	<. 001
Unknown	0.99 (0.96-1.02)	1.04 (1.01-1.08)	1.06 (1.01-1.11)	. 38
Race or ethnicity				
Hispanic	1.01 (1.00-1.02)	1.03 (1.02-1.03)	1.02 (1.00-1.03)	. 23
Non-Hispanic Black	1.01 (1.00-1.02)	1.04 (1.03-1.05)	1.03 (1.01-1.04)	. 01
Non-Hispanic White	1.00 (1.00-1.01)	1.01 (1.00-1.01)	1.01 (1.00-1.01)	[Reference]
Other ${ }^{\text {e }}$	1.00 (0.98-1.02)	1.06 (1.04-1.08)	1.06 (1.03-1.08)	<. 001

Other	$1.00(0.98-1.02)$	$1.06(1.04-1.08)$	$1.06(1.03-1.08)$	$<.001$
Marital status				
Married	$1.00(1.00-1.01)$	$1.00(0.99-1.00)$	$0.99(0.99-1.00)$	[Reference]
Unmarried	$1.01(1.00-1.01)$	$1.04(1.04-1.05)$	$1.04(1.03-1.05)$	$<.001$
Unknown	$1.01(1.00-1.02)$	$1.03(1.02-1.04)$	$1.02(1.00-1.03)$.008

APNCU index ${ }^{f}$

Inadequate	1.01 (1.00-1.02)	1.03 (1.02-1.04)	1.02 (1.00-1.03)	[Reference]
Intermediate	1.00 (0.98-1.02)	1.04 (1.02-1.06)	1.04 (1.01-1.07)	. 18
Adequate	1.00 (0.99-1.01)	1.03 (1.02-1.04)	1.03 (1.02-1.05)	. 15
Adequate plus	1.01 (1.00-1.01)	1.01 (1.01-1.02)	1.01 (1.00-1.01)	. 16
Unknown	1.03 (1.01-1.06)	0.99 (0.97-1.02)	0.96 (0.93-0.99)	. 002
BMI				
Normal weight (18.5-24.9)	1.00 (1.00-1.01)	1.00 (0.99-1.00)	0.99 (0.98-1.00)	[Reference]
Underweight (<18.5)	1.04 (1.02-1.06)	1.00 (0.98-1.02)	0.96 (0.93-1.00)	. 09
Overweight (25.0-29.9)	1.02 (1.00-1.02)	1.01 (1.00-1.02)	1.00 (0.99-1.01)	. 09
Obesity (≥ 30)	1.01 (1.00-1.02)	1.05 (1.05-1.06)	1.04 (1.04-1.06)	<. 001
Payment source for delivery				
Medicaid	1.01 (1.00-1.01)	1.05 (1.04-1.05)	1.04 (1.03-1.05)	[Reference]
Private insurance	1.01 (1.00-1.01)	0.99 (0.99-1.00)	0.99 (0.98-0.99)	<. 001
Self-pay	1.02 (1.00-1.04)	1.02 (1.00-1.04)	1.00 (0.98-1.03)	. 01
Other	1.01 (0.99-1.03)	1.04 (1.02-1.06)	1.03 (1.01-1.06)	. 68
Unknown	0.99 (0.93-1.04)	1.00 (0.96-1.05)	1.02 (0.95-1.10)	. 60
Gestational age				
Term (37-41 wk)	1.00 (1.00-1.01)	1.02 (1.01-1.02)	1.01 (1.00-1.02)	[Reference]
Very and moderate preterm (<35 wk)	1.02 (0.99-1.04)	1.02 (1.00-1.04)	1.00 (0.97-1.04)	. 72
Late preterm (35-36 wk)	1.02 (1.00-1.03)	1.04 (1.02-1.05)	1.02 (1.00-1.04)	. 28
Postterm (>41 wk)	1.01 (1.00-1.03)	1.02 (1.01-1.04)	1.01 (0.99-1.03)	>. 99

Abbreviations: APNCU, adequacy of prenatal care utilization; BMI, body mass index (calculated as weight in kilograms divided by height in meters squared); NA, not applicable; OR, odds ratio.
${ }^{\text {a }}$ Excessive gestational weight gain was defined as weight gain above the BMI-specific Institute of Medicine recommendations.
${ }^{\text {b }}$ We mutually adjusted all covariates in the table in logistic regressions.
${ }^{\text {c }}$ Log ORs were calculated as \log gestational weight gain for 2020 vs 2019 minus log gestational weight gain for 2019 vs 2018, and the corresponding SEs were calculated as the square root of the sum of the squares of the separate logs of SEs.
${ }^{d} P<.05$ indicates statistically significant log OR (at 5\% level) compared with the reference group.
${ }^{e}$ Includes non-Hispanic American Indian or Alaskan Native, non-Hispanic with more than 1 race, and unknown or undisclosed race or ethnicity.
${ }^{f}$ The APNCU index was calculated based on the month in which prenatal care is initiated and the number of visits from initiation of care until delivery. It is categorized into 4 levels: (1) inadequate care is defined as starting prenatal care after the fourth month of pregnancy or receiving less than 50% of expected visits based on the schedule of prenatal care visits recommended by American College of Obstetricians and Gynecologists; (2) intermediate care is care begun by month 4 with 50% to 79% of expected visits received; (3) adequate care is begun by month 4 with 80% to 109% of expected visits received; and (4) adequate plus care is begun by month 4 with 110% or more of expected visits received.
individuals younger than 25 years (net change, $0.22 ; 95 \% \mathrm{Cl}, 0.19-0.26$), non-Hispanic Black individuals (net change, $0.12 ; 95 \% \mathrm{Cl}, 0.07-0.16$), unmarried individuals (net change, $0.16 ; 95 \% \mathrm{Cl}$, $0.13-0.19$), individuals who had obesity before pregnancy (net change, $0.17 ; 95 \% \mathrm{Cl}, 0.14-0.21$), and individuals who used Medicaid to pay for delivery (net change, $0.17 ; 95 \% \mathrm{Cl}, 0.15-0.20$) (Table 1). The pandemic was also associated with an increased risk of excessive GWG (ratio of odds ratio, 1.01; 95\% $\mathrm{Cl}, 1.01-1.02$) (Table 2). The susceptible populations to excessive GWG were the same as for continuous GWG.

Discussion

These findings suggest that the COVID-19 pandemic was associated with higher GWG and higher risk of excessive GWG among US individuals with singleton pregnancies, especially those younger than 25 years, non-Hispanic Black individuals, unmarried individuals, individuals with obesity before pregnancy, and individuals using Medicaid to pay for delivery. These findings shed light on the associations of the pandemic with adverse pregnancy outcomes ${ }^{5}$ and highlight the need to address pandemic-related GWG, particularly among vulnerable populations, to minimize the public health impact. Study limitations include self-reported height and weight before pregnancy and lack of information on COVID-19 infection on birth certificates. Future studies that identify the period of maximum association of the COVID-19 pandemic with GWG may be useful.

ARTICLE INFORMATION

Accepted for Publication: July 26, 2022.
Published: September 9, 2022. doi:10.1001/jamanetworkopen.2022.30954
Open Access: This is an open access article distributed under the terms of the CC-BY License. © 2022 Cao W et al. JAMA Network Open.

Corresponding Author: Shengzhi Sun, PhD, School of Public Health, Capital Medical University, Beijing 100069, China (shengzhisun@ccmu.edu.cn).
Author Affiliations: Department of Social Medicine and Health Education, School of Public Health, Peking University, Beijing, China (Cao); Department of Epidemiology and Biostatistics, School of Public Health, Capital Medical University, Beijing, China (Sun); Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut (Danilack).

Author Contributions: Dr Sun had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Concept and design: All authors.
Acquisition, analysis, or interpretation of data: Sun.
Drafting of the manuscript: Cao, Sun.
Critical revision of the manuscript for important intellectual content: Sun, Danilack.
Statistical analysis: Cao, Sun.
Administrative, technical, or material support: Sun, Danilack.
Supervision: Sun, Danilack.
Conflict of Interest Disclosures: None reported.

REFERENCES

1. Woolford SJ, Sidell M, Li X, et al. Changes in body mass index among children and adolescents during the COVID-19 pandemic. JAMA. 2021;326(14):1434-1436. doi:10.1001/jama.2021.15036
2. Lin AL, Vittinghoff E, Olgin JE, Pletcher MJ, Marcus GM. Body weight changes during pandemic-related shelter-in-place in a longitudinal cohort study. JAMA Netw Open. 2021;4(3):e212536-e212536. doi:10.1001/ jamanetworkopen.2021.2536
3. Voerman E, Santos S, Inskip H, et al; LifeCycle Project-Maternal Obesity and Childhood Outcomes Study Group. Association of gestational weight gain with adverse maternal and infant outcomes. JAMA. 2019;321(17):1702-1715. doi:10.1001/jama.2019.3820
4. Institute of Medicine and National Research Council and Committee to Reexamine IOM Pregnancy Weight Guidelines. Weight Gain During Pregnancy: Reexamining the Guidelines. National Academy of Sciences; 2009
5. Chmielewska B, Barratt I, Townsend R, et al. Effects of the COVID-19 pandemic on maternal and perinatal outcomes: a systematic review and meta-analysis. Lancet Glob Health. 2021;9(6):e759-e772. doi:10.1016/S2214-109X(21)00079-6

SUPPLEMENT.

eAppendix. Statistical Analysis
eReferences

[^0]: + Supplemental content
 Author affiliations and article information are listed at the end of this article.

[^1]: Open Access. This is an open access article distributed under the terms of the CC-BY License.

