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Abstract
Infectious disease superspreading is a phenomenon where few primary cases generate
unexpectedly large numbers of secondary cases. Superspreading, is frequently docu-
mented in epidemiology literature, and is considered a consequence of heterogeneity in
transmission. Since understanding the risks of superspreading became a rising concern
from both statistical modelling and public health aspects, the R package modelSSE
provides comprehensive analytical tools to characterize transmission heterogeneity.
The package modelSSE integrates recent advances in statistical methods, such as
decomposition of reproduction number, for modelling infectious disease superspread-
ing using various types and sources of contact tracing data that allow models to be
grounded in real-world observations. This study provided an overview of the theoret-
ical background and implementation of modelSSE, designed to facilitate learning
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infectious disease transmission, and explore novel research questions for transmission
risks and superspreading potentials. Detailed examples of classic, historical infectious
disease datasets are given for demonstration and model extensions.

Keywords Infectious disease · Contact tracing · Superspreading · Transmission
heterogeneity · R

1 Introduction

In the context of infectious disease transmission, heterogeneity in individual-level
transmission may lead to a phenomenon in which a few primary cases generate large
numbers of secondary cases, which is known as superspreading (Shen et al. 2004;
Fasina et al. 2014; Cauchemez et al. 2014), and is important for understanding the
growth or decline of epidemic curves. Different from the concept of reproduction
number (commonly denoted by using the notation R), superspreading is considered
an outcome of the heterogeneity in individual-level transmission, which cannot be
accounted for by the population-level reproduction number (Meyerowitz et al. 2021;
Lambert et al. 2024). Superspreading events of infectious disease have frequently
been reported since the 21st century, and recently have been recognized as one of the
key factors that trigger unexpected epidemics even under intensive control measures
(Gómez-Carballa et al. 2021;Wang et al. 2021;Wegehaupt et al. 2023). As an increas-
ingly important research topic for theoretical epidemiologists (Stein 2011), especially
for those interested in infectious disease modelling and individual-level transmis-
sion dynamics, characterizing infectious disease superspreading could be achieved by
considering superspreading as a consequence of the heterogeneity in contact rate or
infectiousness of individual cases (Woolhouse et al. 1997; Galvani and May 2005).

Referring to Lloyd-Smith et al. (2005), one of the widely adopted modelling
frameworks for transmission heterogeneity was to capture the generation process of
secondary cases as a classic branching process model with heterogeneity in individual
infectiousness of the primary cases. This modelling framework resulted in finding a
link between the real-world observations of secondary cases’ distribution and a model
parameter from the formulation of negative binomial (NB) distribution, which is the
dispersion parameter k. Extensions to the modelling framework were developed by
Yan (2008); Garske and Rhodes (2008); Nishiura et al. (2012); Blumberg and Lloyd-
Smith (2013b); Kucharski and Althaus (2015), regarding different types of contact
tracing observations, including next-generation case cluster and final outbreak size.
Furthermore, in recent years, the classic framework based on negative binomial (NB)
distribution is generalized or extended by incorporating different patterns of observa-
tional bias (Blumberg and Lloyd-Smith 2013a; Endo et al. 2020; Zhao et al. 2021),
distribution kernels (Kremer et al. 2021; Zhao et al. 2022), and functionality for real-
time risk assessment (Ho et al. 2022; Zhang et al. 2022; Guo et al. 2023). Although
some of these studies released the code scripts, most of which are programmed in R
language, there is a need for developing a comprehensive toolkit of infectious disease
superspreading with both classic NB-distribute branching process (Lloyd-Smith et al.
2005), and the decomposition of reproduction number (Zhao et al. 2022).
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In this study, we introduce an R package, modelSSE, that uniquely uses the repro-
duction number decomposition approach formodelling the characteristics of infectious
disease superspreading, which is freely available from the Comprehensive R Archive
Network (CRAN) at https://CRAN.R-project.org/package=modelSSE (Zhao 2023).
As a statistical toolkit that links theoretical frameworks to real-world observations,
package modelSSE provides functions for capturing the patterns of superspreading
from different types of contact tracing observations that commonly occur in infec-
tious disease surveillance reports or situation reports. By using a contact tracing
dataset, transmission chains or sometimes, transmission networks can be presented
as a tree-structure graph, which can be visualized by R package epicontacts for
handling linelist and contact network data (Nagraj et al. 2018). We note that there are
other R packages developed for modelling infectious disease superspreading under the
“Epiverse-TRACE” project (https://epiverse-trace.github.io/), which is a suite of inno-
vative software and tools for infectious disease analysis and response. These include
R packages epichains for analysing and simulating the size and length of trans-
mission chains using various types of branching process models (Azam et al. 2024),
simulist for simulating case data in the form of linelists and contacts using branch-
ing processes (Lambert and Tamayo 2025), and especially superspreading for
estimating individual-level variation in transmission (Lambert et al. 2024). For more
details about R packages developed under “Epiverse-TRACE” project, please visit
https://epiverse-trace.r-universe.dev/packages. However, modelSSE was developed
by using reproduction number decomposition to characterize the transmission varia-
tion between individuals, which was a generalization of the NB-distribute branching
process (Zhao et al. 2022), and thusmaybemore applicablewhenmore free parameters
are allowed among branching process models.

Since the scientific area of superspreading is relatively new in infectious disease epi-
demiology, packagemodelSSE is designed for both practising purposes and scientific
research, which includes a series of raw data collected from classic epidemiological
reports, modelling functions that serve as the theoretical background, and statistical
fitting procedures for parameters’ estimation. The rest of this study is organized as
follows.

• Section2 presents an overview of the theoretical framework for modelling infec-
tious disease superspreading.

• Section3 describes the fundamental components, and demonstrates the function-
alities and applications of the modelSSE package.

• Section4 summarizes the key characteristics of the modelSSE package.

2 Methods: An Overview of the Theoretical Framework

The section provides an overviewof the theoretical framework formodelling infectious
disease superspreading. For readers who may be interested in the underlying theoret-
ical frameworks (Yan 2008), please refer to the branching process with transmission
heterogeneity (Lloyd-Smith et al. 2005), case cluster size distribution (Nishiura et al.
2012; Blumberg et al. 2014; Kucharski and Althaus 2015), and decomposition of
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reproduction number (Zhao et al. 2022). As an overview, this section focuses on intro-
ducing the main theoretical findings in previous studies, but omits detailed rationals
and mathematical steps that derive the theoretical framework, which was to save space
for presenting the modelSSE package.

2.1 General Framework of Secondary Case Distribution

The transmission of infectious disease is commonly modelled as a (biological) “repro-
duction” process with the intensity of transmissibility measured by a frequently-used
metric, namely reproduction number (Van den Driessche 2017). The reproduction
number is defined as the average number of offspring cases generated by 1 typical
seed case in 1 transmission generation (Adam 2020), which is a classic epidemiolog-
ical parameter that can be defined at both individual level and population level. The
reproduction number at individual level may be variable among different individuals
and thus reflect an inter-individual heterogeneity, whereas the reproduction number
at population level is usually considered to be fixed and reflects an average level of
transmission risk regarding all individuals as a whole group.

2.1.1 Decomposition of Reproduction Number

Individual reproduction number λ is defined as the theoretical mean number of sec-
ondary cases generated by a primary case (Fraser 2007), and λ may vary among
different primary cases (Shen et al. 2004), which captured the heterogeneity of infec-
tious disease transmission at the individual level (Lloyd-Smith et al. 2005). The
heterogeneity in transmissibility is usually modelled as a stochastic effect in the indi-
vidual reproduction number. In Zhao et al. (2022), λ is modelled as a shifted Gamma
distribution, i.e.,

λ ∼ ShiftedGamma (mean = R, dispersion = k, shift = r) . (1)

Here, the ShiftedGamma (mean = R, dispersion = k, shift = r) is equivalent to a
Gamma distribution with mean (R−r) and dispersion parameter (or shape parameter)
k being shifted for r towards the positive side. Then, equivalently, for themathematical
expression of the probability density function (PDF) of λ, we have

fSG(λ) = 1

�(k)
( R−r

k

)k (λ − r)(k−1) exp

(
−k · (λ − r)

R − r

)
,

where �(·) denoted the Gamma function. As such, for the ranges of parameters, we
have R > r ≥ 0, and k > 0.

Note that from an epidemiological perspective, R is the reproduction number at
the population level, where the mean of individual reproduction number λ is R. The
term r could be interpreted as a fixed component of λ, where every individual primary
case has this part of individual reproduction number as a fixed value. By contrast, the
remaining (R − r) is the varying component that may be different among individual
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primary cases. The dispersion parameter k measured the scale of heterogeneity in λ for
different individuals, which was originally introduced by Lloyd-Smith et al. (2005).

Following the classic branching process theory (Diekmann and Heesterbeek 2000;
Gaston et al. 2000), the uncertainty of infectious disease transmission at the population
level was considered to have a Poisson distribution (Farrington et al. 2003). Thus, for a
primary case with a given individual reproduction number λ, the number of secondary
cases (X ) generated by this primary case (or number of offspring cases per index case)
is a random variable following a Poisson distribution with mean λ, i.e.,

X ∼ Poisson (mean = λ) , (2)

where X ∈ {0, 1, 2, . . . }.
Note that the number of secondary cases (X ) could be directly observed in real-

world settings, through contact tracing programs on an individual case basis (Xu et al.
2020; Adam et al. 2020; Wang et al. 2023), in which “infector-infectee” pairs (or
transmission pairs) could be reconstructed.

2.1.2 Secondary Case Distribution

As λ is an individual-level parameter, which is almost impossible to directly observe
for each individual primary case, we refer to our previous work (Zhao et al. 2022),
where the secondary case distribution (or offspring distribution) could be formulated
as Eq (2), and λ follows shifted Gamma distribution that was defined in Eq (1) by using
population-level parameters, i.e., R, r , and k. Thus, by accounting for heterogeneity
at both individual and population levels in Eqs (1) and (2), the number of secondary
cases (X ) generated by a primary case may follow a Delaporte distribution,

X ∼ Delaporte (mean = R, dispersion = k, shift = r) , (3)

or equivalently, for the mathematical expression of the probability mass function
(PMF) of X ,

fD(X = x) =
x∑

a=0

[
�(k + a)

�(k)�(a + 1)

(
k

R − r + k

)k (
R − r

R − r + k

)a
· r

(x−a) exp(−r)

�(x − a + 1)

]

,

=
x∑

a=0

⎡

⎢
⎣

�(k + a)

�(k)�(a + 1)
·

(
R−r
k

)a

(
1 + R−r

k

)(k+a)
· r

(x−a) exp(−r)

�(x − a + 1)

⎤

⎥
⎦ .

TheDelaporte distribution can be regarded as a “convolution” between a negative bino-
mial (NB) distribution and a Poisson distribution (Johnson et al. 2005). The Delaporte
distribution in Eq (3) could be derived by using the probability generating function
(PGF), which was detailed in Zhao et al. (2022).
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2.2 Special Scenarios of Secondary Case Distribution

Under the framework of Delaporte distribution in Eq (3), we introduced the following
special scenarios of secondary case distribution, which was frequently used in the
literature for characterizing the superspreading potentials of infectious diseases.

• When r approached 0 (i.e., r → 0+), the distribution of individual reproduction
number (λ) in Eq (1) is restricted as a Gamma distribution,

λ ∼ Gamma (mean = R, dispersion = k) ,

and the secondary case distribution in Eq (3) is restricted as a negative binomial
(NB) distribution,

X ∼ NegBin (mean = R, dispersion = k) , (4)

or equivalently,

fNB(X = x) = �(k + x)

�(k)�(x + 1)

(
k

R + k

)k (
R

R + k

)x

.

Here, it is straightforward that NB distribution is a special scenario of Delaporte
distribution. To date,NBdistributionwas frequently adopted in literature to capture
the observed patterns of secondary case distribution (Lloyd-Smith et al. 2005; Zhao
et al. 2021;Hwang et al. 2022;Ko et al. 2022;Lu et al. 2023), aswell as the extended
framework of case cluster size based on NB distribution which is introduced in
Sect. 2.3.

• When r → 0+ and k = 1, the distribution of λ in Eq (1) is restricted as an
exponential distribution,

λ ∼ Exponential (mean = R) ,

and the secondary case distribution in Eq (3) is restricted as a geometric distribu-
tion,

X ∼ Geometric (mean = R) , (5)

or equivalently,

fGeo(X = x) = 1

R + 1

(
R

R + 1

)x

.

The geometric distribution is previously adopted to model the secondary case
distribution in Jansen et al. (2003); Ferguson et al. (2004); Nishiura et al. (2012),
but is usually considered a baseline with respect to the fitting performance of NB
distribution in recent literature (Adam et al. 2020).
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• When r → R−, or k → +∞, the distribution of λ in Eq (1) is restricted as a Dirac
delta distribution,

λ ∼ Delta (mean = R) ,

i.e., λ = R, and the secondary case distribution in Eq (3) is restricted as a Poisson
distribution,

X ∼ Poisson (mean = R) , (6)

or equivalently,

fPoi(X = x) = Rx exp(−R)

�(x + 1)
.

The difference betweenEqs (2) and (6) is that the former is defined on an individual
basis, whereas the latter is defined on the population basis. Poisson distributionwas
previously used in relatively dated literature to reconstruct offspring distribution
(Nigel et al. 2004). Although a Poisson-distributed secondary case distribution
cannot incorporate heterogeneity in transmissibility, it was commonly adopted to
construct the likelihood framework in time series analysis of infectious disease
epidemiology owning to its simplicity (Wallinga and Teunis 2004; Cori et al.
2013).

The distribution functions in Eqs (2)-(6) were embedded in function
overalllikelihood() of package modelSSE, which were particularly useful
for likelihood-based statistical inference. We noted that there were also other differ-
ent types of Poisson mixture distributions adopted to understand the heterogeneity
of transmission (Kremer et al. 2021), including Poisson-lognormal and Poisson-
Weibull models, which may be used to fit offspring distributions by using function
fitdist() in package fitdistrplus (Delignette-Muller and Dutang 2015).
More generally, any customised distribution functions can be used to fit the off-
spring distributions, which can be conducted by using likelihood() in package
epichains (Azam et al. 2024).

2.3 Extension of the Theoretical Framework to Other Types of Contact Tracing
Observations

When applying the theoretical framework of secondary case distribution, the real-
world observation of secondary case number per primary case is required for model
fitting and parameter estimation. However, considering the challenges in the practice
of contact tracing, it is usually time- and financial-consuming for the procedures to
collect these data. Alternatively, two types of observations, including next-generation
cluster size and final outbreak size, may be available from the data collected in the
real-world setting, which could also be statistically linked to the theoretical framework
of infectious disease transmission.
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The extension of the theoretical framework to these two types of observations is
introduced as follows, which was previously detailed in Zhao et al. (2022).

2.3.1 Next-Generation Cluster Size

The next-generation cluster is defined as a secondary case cluster (with size j , j ∈
{0, 1, 2, . . . }) seeded by a given number of primary cases (i , i ∈ {1, 2, . . . }) in one
transmission generation, and thus the next-generation cluster size (Y ) is Y = i + j . A
detailed example of next-generation cluster observations can be found in the dataset
smallpox_19581973_Europe in the modelSSE package.

Compared to the secondary case number per primary case, less contact tracing
effort is required to obtain the observations of next-generation cluster size, where
each secondary case is not required to be linked to individual primary cases. As such,
infectious disease modelling studies often use datasets in the form of next-generation
clusters to characterize the superspreading potentials (Kucharski and Althaus 2015;
Chowell et al. 2015; Adam et al. 2020).

Considering i independent and identically distributed (IID) random variables X in
Eq (3), the summation of secondary cases (i.e., j) generated by these i primary cases
followed a Delaporte distribution. We have

j | i ∼ Delaporte (mean = i R, dispersion = ik, shift = ir) ,

or alternatively for next-generation cluster size Y (Y ≥ i),

(Y − i) | i ∼ Delaporte (mean = i R, dispersion = ik, shift = ir) . (7)

Eq (7) could be derived from Eq (3) by using the PGF, which was derived in our
previous study (Zhao et al. 2022). When i = 1, Eq (7) is equivalent to Eq (3).

When r → 0+, Eq (7) is restricted as an NB version,

(Y − i) | i ∼ NegBin (mean = i R, dispersion = ik) ,

which is also derived in Kucharski and Althaus (2015); Blumberg and Lloyd-Smith
(2013b), and frequently adopted for modelling the superspreading potentials using
next-generation cluster size observations (Blumberg et al. 2014; Chowell et al. 2015;
Adam et al. 2020; Tariq et al. 2020).

2.3.2 Final Outbreak Size

The final outbreak size is defined as a case cluster (with size c, c ∈ {0, 1, 2, . . . })
seeded by a given number of primary cases (i , i ∈ {1, 2, . . . }), where each offspring
case is linked to either another offspring case or a primary case, and thus the final
outbreak size (Z ) is Z = i + c. See the dataset MERS_2013_MEregion in the
modelSSE package as a detailed example of final outbreak size observations.

Compared to the next-generation cluster, less contact tracing effort is required to
obtain the observations of final outbreak size, where only primary cases needed to
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be identified, and the transmission chains towards or between offspring cases are not
required to be traced. These final outbreak sizes could be observed from short chains
of transmission, or small case clusters, especially in self-limited outbreaks (Blumberg
and Lloyd-Smith 2013b).

Following the theoretical findings in Farrington et al. (2003); Yan (2008); Nishiura
et al. (2012); Blumberg et al. (2014); Zhao et al. (2022), the probability of having a
final outbreak with size Z (Z ≥ i) initiated by i primary cases is

Pr (Z = z | i) = i

z
· h(z, i), (8)

where

h(z, i) =
z−i∑

a=0

[
�(zk + a)

�(zk)�(a + 1)

(
k

R − r + k

)zk (
R − r

R − r + k

)a
· (zr)(z−i−a) exp(−zr)

�(z − i − a + 1)

]

.

Importantly, the value of h(z, i) could be calculated as the probability of having (z−i)
for a random variable followingDelaporte (mean = zR, dispersion = zk, shift = zr).

When r → 0+, Eq (8) is restricted as an NB version, which is adopted previously
in Ypma et al. (2013); Endo et al. (2020),

Pr (Z = z | i) = i

z
· �(zk + z − i)

�(zk)�(z − i + 1)

(
k

R − r + k

)zk (
R − r

R − r + k

)(z−i)

,

= ik

zk + z − i
·
(
zk + z − i

z − i

) (
k

R − r + k

)zk (
R − r

R − r + k

)(z−i)

,

where
(zk+z−i

z−i

)
is the combination function.

As reported in Yan (2008); Nishiura et al. (2012), the final outbreak size Z would
become a defective random variable when the reproduction number R > 1. Epi-
demiologically, if R > 1, there would be a chance that the outbreak would never be
extinct.

3 Results: Illustrations of Modelling Infectious Disease
Superspreading

The codes used to generate all results in Sect. 3 here are provided in the supplementary
materials as R script.

3.1 Setup

For installation and load modelSSE package (version 0.1-3) in R, the following
standard syntax can be used.
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R> install.packages("modelSSE")
R> library("modelSSE")

This step only needs to be completed once, unless one needs to update the modelSSE
package to the new version. The following syntax can be used to check the version of
the package.

R> packageVersion("modelSSE")

[1] ‘0.1.3’

All outputs of the functions in modelSSE are S3 class.

3.2 Distributions of Different Types of Contact Tracing Observations

As introduced in Sect. 2, the functions provided in the modelSSE package can be
used to capture the theoretical distributions of three types of real-world observations,
including secondary case number, next-generation cluster size, and final outbreak size,
that are commonly used for modelling superspreading from contact tracing data.

The function d_offspringdistn() can be used to calculate the probability of
observing a certain secondary case number (X ) given model parameters R, k, and r of
Delaporte distribution in Eq (3). For example, we calculate the values of probability
mass for observing secondary case numbers from 0 to 9 given R = 1, k = 0.5, and
r = 0.2 as follows.

R> d_offspringdistn(
+ x = 0:9,
+ epi.para = list(mean = 1, disp = 0.5, shift = 0.2),
+ offspring.type = "D",
+ )

[1] 0.507755258 0.257783439 0.113508838 0.055201186
0.028991195

[5] 0.015857511 0.008879155 0.005048680 0.002902314
0.001682269

This distribution function depends on the formulation of ddelap() in R package
Delaporte (Adler 2013), but translated the statistical parameters into the corre-
sponding epidemiological parameters (i.e., R, k, and r ), which are convenient for
interpretation. As a distribution function, we also have p_offspringdistn(),
q_offspringdistn(), and r_offspringdistn() for cumulative distribu-
tion, quantile (i.e., inverse distribution), and random variable generating functions,
respectively.

Similarly, the function d_nextgenclusterdistn() can be used to calculate
the probability of observing a certain case cluster size (Y ) given model parameters
and number of seed cases (i) in Eq (7).

R> d_nextgenclusterdistn(
+ x = 3:8,
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Fig. 1 (Color figure online) An illustration of the probability distributions of the individual reproduction
number (λ, from panel A to D), number of secondary cases (X , from panel E to H), and final outbreak
size seeded by 1 primary case (Z , from panel I to L). Panels A, E, and I presented the scenario that the
secondary case follows a Poisson distribution given in Eq (6) with R = 1. Here in panel (A), the individual
reproduction number follows a Dirac delta distribution located at 1, which is visualized as a vertical bar
indicating a “pulse”. Panels B, F, and J presented the scenario that the secondary case follows a geometric
distribution given in Eq (5) with R = 1. Panels C,G, and K presented the scenario that the secondary case
follows a negative binomial (NB) distribution given in Eq (4) with R = 1 and k = 2. Panels D, H, and L
presented the scenario that the secondary case follows a Delaporte distribution given in Eq (3) with R = 1,
k = 2 and r = 0.5

+ seed.size = 3,
+ epi.para = list(mean = 1, disp = 0.5, shift = 0.2),
+ offspring.type = "D"
+ )

[1] 0.13090713 0.19938162 0.18901750 0.14896909 0.10803004
0.07509084

The function d_outbreakdistn() can be used to calculate the probability of
observing a certain outbreak size (Z ) given model parameters and number of seed
cases (i) in Eq (8).

R> d_outbreakdistn(
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+ x = 1:9,
+ seed.size = 1,
+ epi.para = list(mean = 1, disp = 0.5, shift = 0.2),
+ offspring.type = "D"
+ )

[1] 0.50775526 0.13089090 0.06300583 0.03855581 0.02666179
[5] 0.01984230 0.01550817 0.01255227 0.01043002

Additionally, the shifted Gamma distribution of individual reproduction number λ

given in Eq (1) is provided in d_reproductiondistn(), which is mainly used
for visualization.

The probability distributions of the individual reproduction number λ, number
of secondary cases (X ), and final outbreak size (Z ) are illustrated in Fig. 1. These
distribution functions are useful for performing likelihood-based statistical inference
and model simulation for superspreading risk assessment, which will be introduced
in the rest of this Section.

3.3 Parameter Estimation

For model parameter estimation, a randomwalkMarkov chain Monte Carlo (MCMC)
algorithm is embedded in paraest.MCMC() for different types of contact tracing
data.

3.3.1 Example 1: For Secondary Case Number Observations

Functions for parameter estimation are provided, and for an illustration, we use the
dataset COVID19_JanApr2020_HongKong from the modelSSE package.

R>data("COVID19_JanApr2020_HongKong",package="modelSSE")
R>head(COVID19_JanApr2020_HongKong)

obs type
1 0 secondary
2 0 secondary
3 0 secondary
4 0 secondary
5 0 secondary
6 0 secondary

This dataset contains 290 observations of secondary COVID-19 case numbers, each
of which is generated by one seed COVID-19 case in Hong Kong, China from January
to April 2020, which was used in Adam et al. (2020).

MCMC algorithm is conducted in paraest.MCMC() for model parameter esti-
mation. To be consistent with the methodology adopted in Adam et al. (2020), which
used the NB model for secondary case distribution, we also chose the NB model for
parameter estimation as follows.
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Fig. 2 (Color figure online) The MCMC trace plots of posterior samples of parameters R and k, which are
estimated from dataset COVID19_JanApr2020_HongKong and function paraest.MCMC() under
the default settings

R> set.seed(1234)
R> MCMC.output.1 = paraest.MCMC(
+ offspring.type = "NB",
+ data = COVID19_JanApr2020_HongKong$obs,
+ obs.type.lab = "offspring"
+ )
R> print(MCMC.output.1$epi.para.est.output)

epi.para.mean epi.para.disp
med.est 0.5857567 0.4203921
cri.lwr 0.4746994 0.2656291
cri.upr 0.7395822 0.6612423

By setting offspring.type as NB model for secondary case number obser-
vations, the probability distribution in Eq (4) is used as the likelihood function. To
compare with the results in Adam et al. (2020), where R is 0.58 (95% confidence
interval [CI]: 0.45, 0.72), and k is 0.43 (95% CI: 0.29, 0.67), the outputs generated
from paraest.MCMC() are summarised as the median and 95% centile of posterior
samples, such that R is 0.59 (95% credible interval [CrI]: 0.47, 0.74), and k is 0.42
(95% CrI: 0.27, 0.66).

By default, the MCMC algorithm is performed with 10000 runs of iterations, and
the first 33% of runs are discarded as burn-in. The traces of MCMC posterior samples
are visualized in Fig. 2, which showed the convergence of posterior MCMC samples.
The fitting result of secondary case distribution from paraest.MCMC() is shown in
Fig. 3, which is an attempt to reproduce Fig. 3b in Adam et al. (2020), and compared
to the observed distribution of COVID19_JanApr2020_HongKong.

A typical issue of the MCMC algorithm is the trade-off between the conver-
gence of parameters towards the desired distribution (i.e., equilibrium distribution)
and computational time consumption (Cowles and Carlin 1996). As such, for Dela-
porte model, which has 3 parameters, paraest.MCMC() might require a greater
number of MCMC runs to reach posterior samples with satisfied convergence, e.g.,
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Fig. 3 (Color figure online) The observed (grey histogram) and fitted (light blue lines with dots) dis-
tributions of the number of secondary cases. The observed distribution is directly plotted from dataset
COVID19_JanApr2020_HongKong, and the fitted distribution is from the 100 randomly selected pos-
terior samples generated by function paraest.MCMC(). This figure is an attempt to reproduce Fig. 3b in
Adam et al. (2020)

50000 runs, where the number of MCMC runs can be set by assigning a value to
argument para.comb.num.

R> start.proc.time <- proc.time()
R> set.seed(1234)
R> paraest.MCMC(
+ offspring.type = "D", para.comb.num = 50000,
+ data = COVID19_JanApr2020_HongKong$obs,
+ obs.type.lab = "offspring"
+ )$epi.para.est.output

epi.para.mean epi.para.disp epi.para.shift
med.est 0.5868460 0.1793150 0.15446825
cri.lwr 0.4604263 0.0591653 0.05128354
cri.upr 0.7757503 0.3968373 0.29990041

R> end.proc.time <- proc.time()
R> print(end.proc.time - start.proc.time)

user system elapsed
3.06 2.31 17.55

Alternatively, except forDelaportemodel, parameter estimation for the other 3mod-
els in Sect. 2.2 can be achieved by applying fitdist() in the fitdistrplus
package (Delignette-Muller and Dutang 2015), which used maximum likelihood
estimation approach. A recent tentative version of R package superspreading
imported fitdist() for parameter estimation (Lambert et al. 2024). Given the
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convenience of fitdistrplus, many other studies (not only those for infec-
tious disease epidemiology) also used fitdist() for fitting univariate distribu-
tions, e.g., Althaus (2015). However, because Delaporte model is a generalization
of the other 3 models in Sect. 2.2, which is used less frequently and thus not
embedded in fitdistrplus package, we estimate model parameters using
paraest.MCMC().

Since model selection usually needs to be performed among the candidate model
introduced in Sect. 2.2, information criteria such as Akaike information criterion
(AIC) and Bayesian information criterion (BIC) can be calculated by applying
overalllikelihood(). Using the estimated median of posterior samples for
illustration,

R> overalllikelihood(
+ epi.para = list(mean = 0.5857567, disp = 0.4203921,
shift = NA),

+ offspring.type = "NB",
+ data = COVID19_JanApr2020_HongKong$obs,
+ obs.type.lab = "offspring"
+ ) * (-2) + 2 * (+2) ## AIC

[1] 593.9303

R> overalllikelihood(
+ epi.para = list(mean = 0.5857567, disp = 0.4203921,
shift = NA),

+ offspring.type = "NB",
+ data = COVID19_JanApr2020_HongKong$obs,
+ obs.type.lab = "offspring"
+ ) * (-2) + 2 * log(290) ## BIC

[1] 601.27

We report the AIC and BIC for NB model are 593.93 and 601.27, respectively. The
point estimates of model parameters, AIC and BIC are summarized and compared
across different models in Table 1.

3.3.2 Example 2: For Outbreak Size Observations

In this example, we illustrate parameter estimation using paraest.MCMC() for
outbreak size observations. Here, the data MERS_2013_MEregion is loaded.

R> data("MERS_2013_MEregion", package = "modelSSE")
R> tail(MERS_2013_MEregion)

obs.seed obs.finalsize type
50 1 3 outbreaksize
51 1 3 outbreaksize
52 1 5 outbreaksize
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Table 1 Summary of parameter estimates (point estimator), AIC and BIC regarding dataset
COVID19_JanApr2020_HongKong (sample size: 290), across different models in this study, and in
literature

Model type R k r AIC BIC Ref

Poisson 0.58 NA NA 701.85 705.52 This study

Poisson 0.58 NA NA 701.85 not reported Adam et al. (2020)

Geometric 0.59 1 (fixed) NA 606.03 609.70 This study

Geometric 0.58 1 (fixed) NA 606.03 not reported Adam et al. (2020)

Negative binomial 0.59 0.42 NA 593.93 601.27 This study

Negative binomial 0.58 0.43 NA 593.92 not reported Adam et al. (2020)

Delaporte 0.59 0.18 0.15 591.94 602.95 This study

Delaporte 0.59 0.16 0.17 591.80 not reported Zhao et al. (2022)

53 1 5 outbreaksize
54 1 10 outbreaksize
55 1 22 outbreaksize

This dataset contains 55 observations ofMiddle East respiratory syndrome (MERS)
coronavirus outbreak sizes each seeded by 1 primary case in the Middle East (ME)
regions in 2013, which was reported in Poletto et al. (2014), and used for modelling
in Kucharski and Althaus (2015).

The function paraest.MCMC() could be used to find the posterior estimation of
NB parameters.

R> set.seed(123)
R> MCMC.output.2 = paraest.MCMC(
+ offspring.type = "NB",
+ data = MERS_2013_MEregion,
+ var.name = list(obssize = "obs.finalsize", seedsize
= "obs.seed"),

+ obs.type.lab = "outbreak", para.comb.num = 50000
+ )
R> print(MCMC.output.2$epi.para.est.output)

epi.para.mean epi.para.disp
med.est 0.4845105 0.26475421
cri.lwr 0.3086362 0.08750481
cri.upr 0.7803939 1.17765222

By setting obs.type.lab as outbreak size type of observations, the probability
distribution in Eq (8) is used as the likelihood function. The observations of outbreak
size are specified in argument obssize, and the numbers of seed cases are specified
in argument seedsize. Since the sample size is relatively limited (55 observations
in data MERS_2013_MEregion), we set the number of MCMC runs to be 50000
through argument para.comb.num, which is more than the default of 10000 runs,
to ensure the convergence of MCMC traces. Compared to the estimates in Kucharski
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Fig. 4 (Color figure online) The log-likelihood profiles of NB model parameters R (in panelsA and C) and
k (in panelsB andD) from data MERS_2013_MEregion. In each panel, small dots are the calculated log-
likelihood from posterior samples of parameters. The green diamond and vertical grey dashed line indicate
the maximum log-likelihood and maximum likelihood estimate (MLE) of parameter. The horizontal green
dashed line indicates the cutoff for log-likelihood profile that is used for constructing 95% confidence
interval (CI) according to likelihood-ratio (LR) test. Panels C and D have the same contents as in panels
(A) and (B), respectively, whereas the horizontal axis for model parameter is presented in log scale

and Althaus (2015), where R is 0.47 (95% CI: 0.29, 0.80) and k is 0.26 (95% CI: 0.09,
1.24), we estimated R of 0.48 (95% CrI: 0.31, 0.78) and k of 0.26 (95% CrI: 0.09,
1.18).

By calculating the likelihood using posterior samples of parameters, Fig. 4 showed
the log-likelihood profiles of parameters R and k. Alternatively, as a frequentist-based
approach, likelihood profiles could be used to find the maximum likelihood estimate
(MLE), and 95% confidence interval (CI) (Bolker 2008).

R> max.row.index = which.max(MCMC.output.2$est.record.mat$ll)
R> max.ll.para.record = MCMC.output.2$est.record.
mat[max.row.index,]
R> print(max.ll.para.record)

epi.para.mean epi.para.disp ll
43375 0.4704493 0.2572797 -55.29845

R> ci.ll.cutoff = max.ll.para.record$ll -
qchisq(p = 0.95, df = 1) /2
R> summary(subset(MCMC.output.2$est.record.mat, ll >
ci.ll.cutoff)[,c(1:2)])
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epi.para.mean epi.para.disp
Min. :0.2896 Min. :0.08698
1st Qu.:0.4137 1st Qu.:0.18066
Median :0.4822 Median :0.26111
Mean :0.4910 Mean :0.31544
3rd Qu.:0.5578 3rd Qu.:0.38744
Max. :0.7961 Max. :1.23629

Here, the 95% CI could be constructed by using the likelihood-ratio (LR) test, where the

cutoff for log-likelihood profile is defined as themaximum log-likelihoodminus
χ2
0.95,df=1

2 (King
et al. 2016), i.e., using syntax qchisq(p=0.95,df=1)/2 in R (which returns 1.921). As
such, we report MLEs of parameters are R of 0.47 (95% CI: 0.29, 0.80) and k of 0.26 (95% CI:
0.09, 1.24), which are exactly the same as the results reported in Kucharski and Althaus (2015).

3.3.3 Example 3: For Mixed Types of Observations

For other types of contact tracing observations introduced in Sect. 2.3, parameter estimation
may also be performed by using paraest.MCMC(), and dataset mpox_19801984_DRC is
used for illustration.

R> data("mpox_19801984_DRC", package = "modelSSE")
R> head(mpox_19801984_DRC)

obs.seed obs.size type
1 1 0 offspring
2 1 0 offspring
3 1 0 offspring
4 1 0 offspring
5 1 0 offspring
6 1 0 offspring

R> table(mpox_19801984_DRC$type)

nextgen offspring outbreak
19 98 8

This dataset mpox_19801984_DRC included 125 observations of either secondary case
number (98 samples), next-generation cluster size (19 samples), or final outbreak size (8 sam-
ples), whichwere collected from a series ofmpox (i.e., monkeypox) outbreaks in theDemocratic
Republic of the Congo (DRC) from 1980 to 1984 (Fine et al. 1988).

Under the NB model, we estimate parameters as follows.

R> set.seed(1234)
R> MCMC.output.3 = paraest.MCMC(
+ offspring.type = "NB", para.comb.num = 30000,
+ data = mpox_19801984_DRC,
+ var.name = list(
+ obssize = "obs.size", seedsize = "obs.seed",
typelab = "type"
+ ),
+ obs.type.lab = list(
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Fig. 5 The maximum likelihood estimates (MLE) and 95% confidence region of R and k. Here, the green
diamond indicates the maximum likelihood estimates (MLE) of parameters. The small “+” dots are the
parameters’ posterior samples having log-likelihood values larger than the 95% confidence cutoff according
to the likelihood-ratio (LR) test. This figure is an attempt to reproduce Fig. 1A in Blumberg and Lloyd-Smith
(2013b)

+ offspring = "offspring",
+ nextgen = "nextgen",
+ outbreak = "outbreak"
+ )
+ )
R> print(MCMC.output.3$epi.para.est.output)

epi.para.mean epi.para.disp
med.est 0.3558254 0.2168223
cri.lwr 0.2269097 0.1102409
cri.upr 0.5814202 0.4860939

The R is estimated at 0.36 (95%CrI: 0.23, 0.58), and k is at 0.21 (95%CrI: 0.11, 0.49), which
are roughly in line with the results reported in Blumberg and Lloyd-Smith (2013b); Blumberg
et al. (2014) with R of 0.30 (95% CI: 0.21, 0.42), and k is 0.4 (95% CI not reported). Notably, in
the syntax of paraest.MCMC(), the observations of seed case number are specified in argu-
ment var.name, and the types of observations are specified in argument obs.type.lab.

One of the data visualizing approaches for parameter estimates is to present the 95% confi-
dence region for parameters, which is adopted inYpma et al. (2013); Blumberg andLloyd-Smith
(2013a); Kucharski and Althaus (2015); Lim et al. (2021); Guo et al. (2022). We show the 95%
confidence region of R and k in Fig. 5 by applying the likelihood-ratio (LR) test to the posterior
samples of parameters, which appears similar to Fig. 1A in Blumberg and Lloyd-Smith (2013b).
Additionally, an alternative way to present 95% coverage boundary using the MCMC posterior
samples of R and k is to use a two-dimensional (2D) kernel density estimator, which could be
visualized using the auxiliary R function HPDregionplot() in the emdbook package for
the book of Bolker (2008).
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3.4 Risk Assessment of Superspreading Potentials

Although the dispersion parameter k reflects the level of transmission heterogeneity (Lloyd-
Smith et al. 2005), in epidemiological studies, the risks of superspreading are frequently
reported by using metrics that are convenient to interpret for public health practitioners and
policy-makers. Here, we attempted to demonstrate package modelSSE can be used to per-
form superspreading risk assessment by reproducing various key results of superspreading risk
reported in the literature. Thus, to be consistent with these reports, which frequently used NB
models instead of Delaporte model, we also mainly use NB models in Sect. 3.4 here.

3.4.1 Risk of Superspreading Events

Following the definition in Lloyd-Smith et al. (2005), a superspreading event (SSE) is defined
statistically as the event that a seed case generates secondary cases number not less than the
99-th percentile of the Poisson distribution with mean of the basic reproduction number, namely
“superspreading threshold”. For example, with global consensus, the ancestral strain of SARS-
CoV-2 has a basic reproduction number around 2.5 (Zhao et al. 2020; Li et al. 2020; Wu et al.
2020; Riou and Althaus 2020), and thus its superspreading threshold is 7, which was also
adopted in Adam et al. (2020).

R> sse.threshold = qpois(p = 0.99, lambda = 2.5)
R> print(sse.threshold)

[1] 7

By using p_offspringdistn(), we calculate the probability of SSE using R = 0.58
and k = 0.43 under NB model in Adam et al. (2020).

R> p_offspringdistn(
+ q = sse.threshold - 0.5,
+ epi.para = list(mean = 0.58, disp = 0.43, shift = NA),
+ offspring.type = "NB", lower.tail = FALSE
+ )

[1] 0.00485363

Here, we found an SSE risk of 0.49%, comparing to data COVID19
_JanApr2020_HongKong, where 2 seed cases, out of a total of 290 seed cases (0.69%),
generated secondary cases’ number not less than 7.

3.4.2 Risk Assessment Using “20/80”Rule

Afrequently adoptedmetric for transmission heterogeneity is a general “20/80” rule (Galvani
andMay2005;Adamet al. 2020;Wang et al. 2021), and the proportion (P) of themost infectious
seed cases that generated 80% secondary cases was reported. Following the formula derived in
Endo et al. (2020), and adopted in Adam et al. (2020); Zhao et al. (2022),

{
1 − P = ∫ A

0 Delaporte(X = �a� | mean = R, dispersion = k, shift = r) da, and

1 − Q = 1
R · ∫ A

0 �a� · Delaporte(X = �a� | mean = R, dispersion = k, shift = r) da,
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Fig. 6 (Color figure online) The proportion of secondary cases (Q, on the vertical axis) generated from the
proportion of the most infectious cases (P , on the horizontal axis), i.e., Lorenz curve. The blue dot-dashed
curve is generated from Poisson model with R = 2.5. The green dotted curve is generated from geometric
model with R = 2.5. The red dashed curve is generated from NB model with R = 2.5 and k = 0.1, which
was estimated from Endo et al. (2020). The purple curve is generated from Delaporte model with R = 2.5,
k = 0.1 and r = 0.5. All curves are generated by using tailoffspringQ()

where Q, parameters R, k and r are known (e.g., Q = 80%), but P and A are unknown.
Thus, P can be solved (numerically) as the proportion of seed cases causing Q proportion of
transmission events.

The function mostinfectiousP() could be used to calculate P as the proportion of seed
cases that generated Q proportion of secondary cases with a given value of Q (e.g., Q = 80%).

R> mostinfectiousP(
Q = 0.80,
epi.para = list(mean = 2.5, disp = 0.10, shift = NA),
offspring.type = "NB"

)

[1] 0.0930515

Here, we set R = 2.5 and k = 0.10 under NBmodel, andwe calculate that 80% of secondary
transmissions may be caused by 9.3% infectious individuals, which is roughly in line with 10%
in Endo et al. (2020) using the same NB parameters. Generally, Q is considered a function of P ,
and the concaveness of this “Q-to-P” function is positively related to the level of transmission
heterogeneity (Woolhouse et al. 1997; Lloyd-Smith et al. 2005), which iswell-known the Lorenz
curve for economists as a graphical representation of distribution inequality (Lorenz 1905). By
using the same NB parameters in Endo et al. (2020), we show the Lorenz curves in Fig. 6, which
could be generated by applying tailoffspringQ(), which is a “sister” function, and a
backward version of mostinfectiousP() in modelSSE package.
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Fig. 7 (Color figure online) The projection of the epidemic curve (grey curves) seeded by 1 source
case for 10 transmission generations, where 200 runs of model simulations are plotted. The function
r_nextgenclusterdistn() is used iteratively for generating the curves, with R = 0.95 and k = 0.18
(in panel A) under NB model for Ebola outbreak in Guinea (Althaus 2015). Panels B, and C have the same
contents as those in panel (A), except that R = 0.95 and k = 1, and R = 1.05 and k = 0.18, respectively.
Note: the number of transmission generations is a discrete integer (not continuous), but has been plotted
here with a slight, horizontal jitter, with a range between −0.05 and +0.05, only to aid visualization

3.4.3 Projection of Epidemic Curve

With the knowledge of transmission heterogeneity, the epidemic curve could be projected by
applying r_nextgenclusterdistn() iteratively, which is based on Eq (7). It is usually
of public health importance to assess the risk of causing an epidemic by a few imported cases,
especially during the initial disease control phase (Leung et al. 2021).

For illustration, we simulate the epidemic curve of Ebola outbreak in Guinea using R = 0.95
and k = 0.18 under NB model, which was estimated in Althaus (2015) using the data reported
in Faye et al. (2015). Figure7A showed 200 runs of Ebola epidemic curve simulation seeded by
1 source case for 10 transmission generations, which is a simplified version of Fig. 1B inAlthaus
(2015). We remark that Fig. 1B in Althaus (2015) used unit per day as timeline, but our Fig. 7A
used transmission generation as “time” scale, which can be directly translated by accounting for
the time interval between consecutive transmission generation, e.g., serial interval (Fine 2003).

As R = 0.95 < 1 for Fig. 7A, most epidemic curves are self-limited within 10 generations,
but only a few of them led to outbreaks with sizes over 100 cumulative cases, which may largely
be due to superspreading (Faye et al. 2015; Althaus 2015). Figure7B andC have similar contents
butwith R = 0.95 and k = 1, and R = 1.05 and k = 0.18, respectively. For comparison, Fig. 7B
represents a less dispersed version than Fig. 7A as the dispersion parameter k increased from
0.18 to 1. Figure7C shows a larger risk of having a large-scale outbreak than Fig. 7A as the
reproduction number R increased from 0.95 to 1.05.

3.4.4 Transmission Generation to Outbreak Extinction

The transmission generation to outbreak extinction is the number of transmission generations
needed for an outbreak to extinct, which is studied in detail in Yan (2008). As studied in Yan
(2008); Nishiura et al. (2012), the probability of outbreak extinction could be derived from the
probability of generating 0sary case from a certain number of primary cases, which is also
relevant to the calculation of transmission generation to outbreak extinction (Nishiura et al.
2015).
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Fig. 8 The probability (on the vertical axis) of an outbreak seeded by 1 source case sustained (or sur-
vived) for more than a certain number of transmission generations (on the horizontal axis). The function
r_nextgenclusterdistn() is used iteratively for generating the outbreaks, with R = 0.75 and
k = 0.14 (in panel (A)) under NB model for MERS coronavirus outbreak (Nishiura et al. 2015). Panel (A)
is an attempt to reproduce Fig. 2B in Nishiura et al. (2015). Panels B, and C have the same contents as those
in panel A, except that R = 0.75 and k = 1, and R = 1 and k = 0.14, respectively. Panels D, E, and F
have the same settings as those in panels (A), (B), and (C), respectively, except that the outbreak is seeded
by 5 source cases here

By using r_nextgenclusterdistn() iteratively, we may calculate the number of
transmission generations to outbreak extinction numerically, which is usually of interest to
assess the sustainable risk in small outbreaks, e.g., outbreaks caused by imported cases. For
illustration, we simulate the transmission process of MERS coronavirus using R = 0.75 and
k = 0.14 under NB model, which was previously estimated (Nishiura et al. 2015). Figure8A
showed the probability of MERS-CoV transmission seeded by 1 source case has sustained, i.e.,
the survival probability of outbreak, for more than a certain number of transmission generations,
which is an attempt to replicate Fig. 2B in Nishiura et al. (2015).

Since R = 0.75 < 1 in Fig. 8A, the outbreak is highly sub-critical with only around 10%
probability to transmit for more than 1 generation. As R increases to 1 in Fig. 8C, the risk of
observing a multi-generation outbreak increases. With the number of seed cases increased to 5
in Figs. 8D to E, a substantial increase in the risk of multi-generation outbreaks is found.

3.4.5 Risk of Large-Scale Outbreak

By applying Eq (8), we could calculate the probability, i.e., Pr (Z > z | i), of the event that
a certain number of seed cases (i) may lead to an outbreak larger than a final size (z), where

Pr (Z > z | i) = 1 −
z∑

a=i

Pr (Z = a | i) .
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Fig. 9 (Color figure online) The probabilities that the different numbers of seed cases generate outbreaks
with sizes larger than the given number. In panel A, the red dashed, blue dotted, and green long-dashed
curves indicate the probabilities that 1, 5, and 10 separately introduced seed cases generate at least 1 outbreak
larger than the final size shown at the horizontal axis, respectively. This panel is an attempt to replicate
the results presented in Fig. 2A of Lim et al. (2021). The purple curve indicates the probability that 10
simultaneously introduced seed cases generate an outbreak with a given final size. The curves in panel A
are generated with R = 0.81 and k = 0.23 under NB model, which was estimated in Lim et al. (2021).
Panel B has the same contents as those in panel (A), except for using R = 0.81, k = 0.09 and r = 0.17
under Delaporte model in Zhao et al. (2022)

The formula above is applicable for i = 1 or i > 1 seed cases. Similarly, for the situations
with multiple seed cases, we could calculate the probability of the event that n seed cases are
introduced into the community separately, and result in at least 1 outbreak larger than a final
size (z), which is 1 − [Pr (Z ≤ z | i = 1)]n . Thus, we have

1 − [Pr (Z ≤ z | i = 1)]n = 1 − [1 − Pr (Z > z | i = 1)]n = 1 −
[ z∑

a=1

Pr (Z = a | i = 1)

]n

.

This formula is also usually adopted for risk assessment of superspreading, which was derived
in Kucharski and Althaus (2015), and applied in Lim et al. (2021). With R = 0.81 and k = 0.23
under NB model, we presented the final outbreak size risk assessment in Fig. 9A by applying
p_outbreakdistn(), which attempted to replicate the results presented in Fig. 2A of Lim
et al. (2021) for COVID-19 in South Korea. To compare the differences between NB model
and Delaporte model, Fig. 9B is generated using the same syntax as Fig. 9A, except for using
R = 0.81, k = 0.09 and r = 0.17 under Delaporte model in Zhao et al. (2022).

4 Conclusive Remarks

This study provided an overview of the theoretical background and implementation of R pack-
age modelSSE. The modelSSE package is designed to be both an instructional material for
learning infectious disease contact tracing data, and a toolkit for data analysis of transmission
risks and superspreading potentials. It includes extensive statistical inference and simulation
tools of superspreading modelling for 3 types of commonly adopted contact tracing data, which
may be used for outbreak risk assessment, and gaining insights into infectious disease epidemi-
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ology. Through the model application to many classic, historical infectious disease datasets, we
demonstrated the flexibility and validity of the package functionalities, and consistency of pack-
age outputs with various previous studies. Although the examples demonstrated in this study are
relatively simple, the modelSSE package is developed based on theoretical methods described
in Gaston et al. (2000); Lloyd-Smith et al. (2005); Yan (2008); Nishiura et al. (2012); Blumberg
and Lloyd-Smith (2013b); Kucharski and Althaus (2015); Endo et al. (2020), including the
state-of-art reproduction number decomposition approach (Zhao et al. 2022), which are already
widely adopted in infectious disease modelling studies. Since the transmission of emerging
pathogens become increasingly important for public health across the world, we believe the
modelSSE package has the potential to become instrumental in future epidemiological studies
of infectious diseases.
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