
Contents lists available at ScienceDirect

Environmental Research
journal homepage: www.elsevier.com/locate/envres

Mortality risk and burden associated with temperature variability in China,
United Kingdom and United States: Comparative analysis of daily and
hourly exposure metrics
Yunquan Zhanga,b,∗, Qianqian Xiangc, Chuanhua Yud, Junzhe Baoe, Hung Chak Hof,
Shengzhi Sung, Zan Dingh, Kejia Hui, Ling Zhangb,j
a Department of Epidemiology and Biostatistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, China
bHubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, 430065, China
cHubei Provincial Center for Disease Control and Prevention, Wuhan, 430079, China
dDepartment of Preventive Medicine, School of Health Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
e Department of Health Policy and Management, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
fDepartment of Urban Planning and Design, The University of Hong Kong, Hong Kong, China
g Department of Epidemiology, Brown University School of Public Health, Providence, RI, 02912, USA
h The Institute of Metabolic Diseases, Baoan Central Hospital of Shenzhen, The Fifth Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518102, China
iDepartment of Precision Health and Data Science, School of Public Health, Zhejiang University, Hangzhou, 310003, China
jDepartment of Environmental Hygiene and Occupational Medicine, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan,
430065, China

A R T I C L E I N F O

Keywords:
Climate change
Temperature variability
Mortality risk
Mortality burden
Attributable fraction

A B S T R A C T

Background: Temperature variability (TV) is closely associated with climate change, but there is no unified TV
definition worldwide. Two novel composite TV indexes were developed recently by calculating the standard
deviations of several days’ daily maximum and minimum temperatures (TVdaily), or hourly mean temperatures
(TVhourly).
Objectives: This study aimed to compare the mortality risks and burden associated with TVdaily and TVhourly using
large time-series datasets collected from multiple locations in China, United Kingdom and United States.
Methods: We collected daily mortality and hourly temperature data through 1987 to 2012 from 63 locations in China
(8 communities, 2006–2012), United Kingdom (10 regions, 1990–2012), and USA (45 cities, 1987–2000). TV-
mortality associations were investigated using a three-stage analytic approach separately for China, UK, and USA.
First, we applied a time-series regression for each location to derive location-specific TV-mortality curves. A second-
stage meta-analysis was then performed to pool these estimated associations for each country. Finally, we calculated
mortality fraction attributable to TV based on above-described location-specific and pooled estimates.
Results: Our dataset totally consisted of 23, 089, 328 all-cause death cases, including 93, 750 from China, 7,573,716
from UK and 15, 421, 862 from USA, respectively. In despite of a relatively wide uncertainty in China, approximately
linear relationships were consistently identified for TVdaily and TVhourly. In the three countries, generally similar lag
patterns of TV effects were consistently observed for TVdaily and TVhourly. A 1 °C rise in TVdaily and TVhourly at lag 0–7
days was associated with mortality increases of 0.93% (95% confidence interval [CI]: 0.12, 1.74) and 0.97% (0.18,
1.77) in China, 0.33% (0.15, 0.51) and 0.41% (0.21, 0.60) in UK, and 0.55% (0.41, 0.70) and 0.51% (0.35, 0.66) in
USA, respectively. Larger attributable fractions were estimated using TVdaily than those using TVhourly, with estimates
at 0–10 days of 3.69% (0.51, 6.75) vs. 2.59% (0.10, 5.01) in China, 1.14% (0.54, 1.74) vs. 0.98% (0.55, 1.42) in UK,
and 2.57% (1.97, 3.16) vs. 1.67% (1.15, 2.18) in USA, respectively. Our meta-regression analyses indicated higher
vulnerability to TV-induced mortality risks in warmer locations.
Conclusions: Our study added multi-country evidence for increased mortality risk associated with short-term
exposure to large temperature variability. Daily and hourly TV exposure metrics produced generally comparable
risk effects, but the attributable mortality burden tended to be higher using TVdaily instead of TVhourly.
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1. Introduction

Climate change, a significant global environmental problem, has
been widely regarded as the greatest public health threat across the
globe in the 21st century (Huang et al., 2013; Watts et al., 2015). Short-
term links between temperature extremes and morbidity/mortality, for
instance, have been extensively demonstrated at regional and national
scales over the past decades (Cheng et al., 2019a; Song et al., 2017; Ye
et al., 2012). As shown by global epidemiologic evidence, temperature-
mortality relationships generally exhibit U, V, or J patterns in various
climate zones (Gasparrini et al., 2015; Guo et al., 2014), indicating
increased mortality burden arising from both low and high tempera-
tures (Gasparrini et al., 2015; Hajat et al., 2010; Zhang et al., 2019).

In addition to cold and heat, temperature variability (TV) has also
been increasingly identified as a significant potential trigger for extra
mortality risks (Guo et al., 2016). Diurnal temperature range (DTR),
defined as the difference of maximum and minimum temperature
within a day, was previously adopted to assess mortality impacts as-
sociated with short-term temperature variability (Lim et al., 2015; Yang
et al., 2018b; Zhang et al., 2018a). In recent years, there is emerging
epidemiologic evidence showing that temperature change between
neighboring days (TCN) may also play an independent role in influ-
encing daily mortality (Lin et al., 2013; Zhan et al., 2017). These
growing epidemiologic findings provide some evidence guiding TV-re-
lated health assessment by considering both intra-day and inter-day
temperature variability (Vicedo-Cabrera et al., 2016). However, models
that simultaneously include both intraday and interday TV variables
may potentially lead to invalid effect estimates because there might be
strong collinearity between intraday and interday TV, particularly
when considering lag effects (Guo et al., 2016).

Recently, two novel composite TV indexes were consequently de-
veloped by calculating the standard deviations of several days’ daily
maximum and minimum temperatures (TVdaily) (Guo et al., 2016), or
hourly mean temperatures (TVhourly) (Cheng et al., 2017). Also, TVdaily
or TVhourly has been applied separately in several multicity studies in
China (Hu et al., 2019; Yang et al., 2018a; Zhang et al., 2017b) and
Australia (Cheng et al., 2017), nationwide investigations in Braze (Zhao
et al., 2018a) and England and Wales (Zhang et al., 2018b), as well as
an international investigation (Guo et al., 2016).

Both TVdaily and TVhourly are currently of great help to enhance the
comprehensive understanding of health impact due to unstable tem-
peratures, while some researchers recommend TVhourly rather than
TVdaily through auguring that TVhourly could theoretically better capture
the temporal variation in temperature at a finer scale (Cheng et al.,
2017; Zhang et al., 2018b). However, no research has provided popu-
lation-based evidence regarding this debate, because prior epidemio-
logic studies generally linked TVdaily or TVhourly separately with health.
Here, this study aimed to compare the mortality effects associated with
TVdaily and TVhourly using large time-series datasets collected from
China, United Kingdom and United States.

2. Materials and methods

2.1. Data collection

2.1.1. China data
Daily all-cause mortality data during 2006–2012 for 8 communities

in southern China (Changsha, Wuhan (Jiang'an and Qiaokou), Hefei,
Mananshan, Guilin, Nanning, Haikou) were collected from the Chinese
Centre for Disease Prevention and Control. Meteorological data for the
same period, including daily mean, minimum, and maximum tem-
perature and mean relative humidity, were collected from the China
Meteorological Data Network (http://data.cma.cn), which is admini-
strated by the China Meteorological Administration.

Hourly temperature data for each community were acquired through
the global hourly datasets of United States’ National Centers for

Environmental Information (NCEI, https://www.ncei.noaa.gov/). NCEI
was established by the National Oceanic and Atmospheric Administration
(NOAA) and aims to preserve, monitor, assess, and provide public access
to the global environmental data and information including climate and
historical weather (Chen et al., 2019; Jiao et al., 2019).

2.1.2. UK data
We acquired daily time-series data on weather and all-cause mor-

tality in 10 Government Office Regions (i.e., Wales and 9 regions in
England) from 1990 to 2012, from the example dataset for UK in a
previous multi-country temperature-mortality study (Gasparrini et al.,
2016). This dataset has been also made publicly available by Dr. An-
tonio Gasparrini on his personal web page (http://www.ag-myresearch.
com/). A detailed description of these data can be found elsewhere
(Armstrong et al., 2011; Gasparrini et al., 2012b, 2015).

Hourly temperature data for UK atmospheric monitoring stations
between 1 January 1990 and 31 December 2012, were originally col-
lected from the British Atmospheric Data Centre (BADC) (http://
archive.ceda.ac.uk/). The station-based hourly temperatures were
then aggregated into regional-average measurements. More details
about the temperature data integration can be found in our previous
publication (Zhang et al., 2018b).

2.1.3. US data
Daily all-cause mortality and meteorological data for 45 US me-

tropolises during 1987–2000, were extracted from the publicly avail-
able National Morbidity, Mortality and Air Pollution Study (NMMAPS).
The included 45 large urban communities were located across the seven
regions in mainland America: North West (7), Upper Midwest (4),
Industrial Midwest (10), North East (7), Southern California (3), South
West (6), and South East (8). The details of this dataset could be found
in previous publications (Peng et al., 2005; Samet et al., 2000). Hourly
temperatures for the 45 US communities from January 1, 1987 to De-
cember 31, 2000 were acquired through Local Climatological Data
(LCD) of NCEI (https://www.ncdc.noaa.gov/cdo-web/datatools/lcd/).
LCD provides public access to the historical weather data for airport
stations located within the United States and its territories, as well as
many international cities.

2.2. Temperature variability index

Two composite indexes, namely TVdaily and TVhourly, were used for
exposure assessment of short-term temperature variability in our study.
Consistent with previous investigations, TVdaily was generated from the
standard deviations (SD) of several days' daily minimum and maximum
temperatures (Guo et al., 2016; Zhang et al., 2017b), whereas TVhourly
was developed by calculating SDs of hourly temperatures during the
exposure days (Cheng et al., 2017; Hu et al., 2018; Zhang et al., 2018b).
These two measurements can account for both intra- and inter-day
temperature variability, and overcome the strong collinearity when
introducing intra- and inter-day TV into the model at the same time. To
better understand TV-mortality associations, we assessed separately the
mortality effects of TV exposure along various days (from lag 0–1 days
to lag 0–10 days). For instance, TV at lag 0–1 days (TV0–1) was derived
by calculating the SD of temperature exposure on the same day and 1
days before, TV0–2 was the SD for the preceding 3 days’ exposure, and
so on.

2.3. Data analysis

TV-mortality associations were investigated using a three-stage
analytic approach separately for China, UK, and USA. First, we applied
a time-series regression for each location to derive location-specific TV-
mortality curves. A second-stage meta-analysis was then performed to
pool these estimated associations for each country. Finally, we calcu-
lated mortality fraction attributable to TV based on above-described
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location-specific and pooled estimates. Similar analytic strategy has
also been adopted in several previous large-scale studies (Gasparrini
and Armstrong, 2013; Gasparrini et al., 2012a).

All the analyses were performed using R software (version 3.3.2,
http://www.R-project.org). We used “dlnm” package to create DLNM
framework for temperature in the first-stage analysis, and the “metafor”
package to perform the second-stage meta-analysis. All statistical tests
were two-sided, and effects of p < 0.05 were considered statistically
significant.

2.3.1. First-stage time-series regression
A standard time-series quasi-Poisson regression analysis (Peng et al.,

2006) was performed to assess location-specific TV-mortality relation-
ships. As previous studies reported, our preliminary analysis found an
approximately linear dose-response curve between TV and mortality.
We thereby included a linear term for TV in our final regression ana-
lysis. Several covariates were included in our regression model: (1) a
naturel cubic spline (NCS) with 7 degrees of freedom (df) per year for
calendar time to remove the long-term trends and seasonality (Ma et al.,
2019; Yang et al., 2015); (2) indicator variable for day of the week
(DOW); (3) 3 df NCS at equally spaced quantiles for the current day's
mean relative humidity (Lin et al., 2018; Zhang et al., 2017a); (4) a
flexible “cross-basis” term for mean temperature created by distributed
lag nonlinear model (DLNM), modelling exposure-lag-response asso-
ciations between temperature and mortality (Gasparrini, 2011;
Gasparrini et al., 2010). Specifically, the effect of temperature exposure
was speculated using a NCS with 3 internal knots (10th, 75th, and 90th)
while the lagged-response association was modelled with a NCS with 2
internal knots at equally spaced log-values (Yang et al., 2015; Zhang
et al., 2019). A maximum lag of 21 days was chosen to fully control for
the confounding effects of both low and high temperatures, which was
motivated by prior multi-country investigations (Gasparrini et al.,
2015; Guo et al., 2014). Given that different definitions of the “cross-
basis” term for temperature may introduce some uncertainties (Li et al.,
2018; Zhang et al., 2019), we also tested modelling choices of max-
imum lag and internal knots in our sensitivity analyses.

2.3.2. Second-stage meta-analysis
For each country, we pooled location-specific estimates on TV-

mortality associations derived from the first-stage time series analysis,
using random-effects meta-analysis through maximum likelihood esti-
mation (MLE) (Viechtbauer, 2010). Location-specific and pooled esti-
mates of TV effects on mortality were presented as excess mortality risk
(%) and its 95% confidence interval (95% CI) associated with per 1 °C
increase in TV index along different exposure days.

To illustrate the potential effect modification in the TV-mortality
association, we additionally fitted a number of MLE-based meta-re-
gression models by separately incorporating some geographical (e.g.,
latitude and longitude) and climatological (e.g., temperature and

humidity) factors as predicators (Cheng et al., 2017; Yang et al.,
2018a). The modified effects of these quantitative predictors were ex-
pressed as percentage changes in mortality (and 95% CIs) per an IQR
(interquartile range) increase in the distribution of each predictor. We
also compared TV-associated effects between countries by creating
dummy variables and indicating China as the reference.

2.3.3. Third-stage assessment of attributable fraction
To estimate TV-attributable mortality burden, we first calculated

attributable number of all-cause deaths (AD) caused by TV on each day
of the whole series (Cheng et al., 2017; Hu et al., 2019). For a specific
location, the formula for AD calculation is given as follows:
ADi=Di× (RRi−1) / RRi
Where ADi denotes the attributable death number on day i, Di is the
observed death number on day i, RRi refers to the relative risk asso-
ciated with TV exposure on day i.

By summing up ADi during the whole series, total attributable
deaths can be then obtained for each location. The sum of location-
specific ADs generated the national-level AD estimate in each country.
Attributable fractions (AF) of mortality (location-specific and country-
level) were consequently provided by the ratios of total AD to the
corresponding total number of observed deaths (Gasparrini et al.,
2015).

2.3.4. Sensitivity analysis
To check the robustness of our main results, we performed several

sensitivity analyses. Specifically, we tested the modelling choices of our
first-stage time-series regression, by varying the dfs for calendar time,
maximum lag days and internal knots for temperature.

3. Results

Table 1 gives the descriptive statistics of the included communities/
regions. The 63 locations (Fig. 1) from China (8 communities), UK (10
regions) and USA (45 metropolises), covered a broad span of latitudes
(from 20.0°N to 55.0°N) and longitudes (from 122.7°W to 118.3°E). Our
dataset totally consisted of 23, 089, 328 all-cause death cases, including
93, 750 from China, 7,573,716 from UK and 15, 421, 862 from USA,
respectively. Mean temperatures varied substantially across locations,
ranging from 8.8 °C in Minneapolis/St. Paul to 26.5 °C in Phoenix
(Table S1). Large differences between TVdaily and TVhourly were con-
sistently observed in the three countries. In China, for instance,
country-average temperature variability was 4.7 °C (3.8–5.2) for TVdaily
and 2.8 °C (2.4–3.1) for TVhourly respectively. Location-specific sum-
mary characteristics were presented in the supplementary material
(Table S1).

Fig. 2 illustrates a clear comparison between TVhourly and TVdaily at
lag 0–1 days, in terms of their overall distributions for Wuhan,

Table 1
Summary characteristics of the included communities/regions in China, United Kingdom and United States.
Characteristics Country

China United Kingdom United States

Communities/regions (number) 8 10 45
Latitude (°N) a 20.0–31.5 51.0–55.0 25.8–47.7
Longitude (°E) a 108.1–118.3 9.5–11.6 71.1°W −122.7°W
Study period (year) 2006–2012 1990–2012 1987–2000
Total deaths (number) 93, 750 7, 573, 716 15, 421, 862
Annual mean temperature (°C) b 18.8 (16.3–23.9) 10.4 (9.5–11.7) 14.9 (8.8–26.5)
Annual mean humidity (%) b 73.7 (68.8–80.5) 74.7 (67.4–78.3) 65.5 (28.9–75.2)
Annual mean TVdaily (°C) b 4.7 (3.8–5.2) 4.4 (4.0–4.8) 6.5 (3.9–11.1)
Annual mean TVhourly (°C) b 2.8 (2.4–3.1) 2.2 (1.8–2.5) 3.8 (2.2–5.4)

a Ranges of location-specific latitudes or longitudes.
b Mean location-specific temperature, humidity or TV (range).
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Fig. 1. Locations of the 63 communities across China (a), UK (b), and USA (c).

Fig. 2. Distributions of temperature variability indexes at lag 0–1 days generated from daily and hourly temperatures in Wuhan, 2006–2012 (a), London, 1990–2012
(b), and Los Angeles, 1987–2000 (c).
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2006–2012 (a), London, 1990–2012 (b), and Los Angeles, 1987–2000
(c), respectively. As expected, the TVdaily series is largely shifted to-
wards wider ranges when comparing with TVhourly series. Additionally,
both distributions of TVdaily and TVhourly changed very slightly when
extending exposure days from 0–1 to 0–10 days (Fig. S1).

Fig. 3 shows the pooled exposure-response curves for TV-mortality
associations in each country. In despite of a relatively wide uncertainty
in China, approximately linear relationships were consistently identi-
fied for TVdaily and TVhourly. Clear evidence was observed on increased
risks associated with high TV exposures in all three countries, while
China tended to exhibit larger mortality effects.

Fig. 4 demonstrates effect estimates of TV-mortality associations
across various exposure days, presented as percent changes (%, 95%
CIs) associated with per 1 °C increase in TVdaily and TVhourly. Effect
estimates of TVdaily and TVhourly for various exposure days were com-
parable in China and USA, while UK exhibited smaller effects of TVdaily
than those of TVhourly at short lags such as 0–1 days. In the three
countries, generally similar lag patterns of TV effects were consistently
observed for TVdaily and TVhourly. Specifically, TV effects increased to
some extent with the number of exposure days, and tended to be re-
latively stable around exposures along 0–7 days, despite slight increases
observed at longer exposure periods (e.g., 0–10 days) in UK. To ease the
interpretation, we mainly chose TV0–7 and TV0–10 as the representative
exposures to report our subsequent results.

Table 2 summarizes the mortality risks attributable to TVdaily and
TVhourly along lag 0–7 and lag 0–10 days. Generally, most effect esti-
mates (i.e., both excess mortality risks and attributable fractions) in-
creased to some extent from lag 0–7 to 0–10 days. A 1 °C rise in TVdaily
and TVhourly at lag 0–7 days was associated with mortality increases of
0.93% (95% CI: 0.12, 1.74) and 0.97% (0.18, 1.77) in China, 0.33%
(0.15, 0.51) and 0.41% (0.21, 0.60) in UK, and 0.55% (0.41, 0.70) and
0.51% (0.35, 0.66) in USA, respectively. Larger attributable fractions
were estimated using TVdaily than those using TVhourly, with estimates at
0–10 days of 3.69% (0.51, 6.75) vs. 2.59% (0.10, 5.01) in China, 1.14%
(0.54, 1.74) vs. 0.98% (0.55, 1.42) in UK, and 2.57% (1.97, 3.16) vs.
1.67% (1.15, 2.18) in USA, respectively.

Tables 3S2Table 3 and Table S2 explore the potential modifying
effects of several location-level predictors on TV-mortality associations

by performing meta-regression analysis using different exposure days.
Compared with UK and USA, China exhibited relatively larger excess
mortality risks associated with temperature variability. Among the se-
lected geographic and climatologic factors, we only observed sig-
nificant modifying effects of latitude and average temperature. At lag
0–7 days, for example, increase in mortality associated with 1 °C rise in
TVdaily, showed a change of −0.17% (95% CI: −0.30, −0.05) and
0.22% (95% CI: 0.05, 0.39) for an IQR increase of latitude (9.5 °N) and
average temperature (6.9 °C), respectively. Consistently, these results
indicated higher vulnerability to TV-induced mortality risks in warmer
locations.

The sensitivity analyses present the mortality estimates of TV-as-
sociated ERR and AF by changing the dfs for calendar time, maximum
lag days and internal knots for temperature (Table S3), suggesting that
our main findings from TVdaily and TVhourly were generally robust to
modelling choices.

4. Discussion

To the best of our knowledge, this is the first large-scale study to
compare mortality risks associated with temperature variability using
daily and hourly exposure metrics. Our multi-country analyses pro-
vided strong evidence of increased mortality triggered by large TV
exposure in China, UK, and USA. Despite largely consistent TV-mor-
tality associations identified for both TV indexes, we also observed
some differences when separately attributing mortality fraction to
TVdaily and TVhourly. These findings would provide some important
implications for better understanding of health burden caused by un-
stable temperatures, thus promoting future public health decision-
making so as to fight against global climate change.

Previous epidemiologic investigations focused mostly on associating
health outcomes with DTR, a common index for intra-day TV exposure
assessment. Here, we could also take inter-day TV into consideration by
generating the standard deviations of several days’ daily or hourly
temperatures (i.e., TVdaily and TVhourly). Given no uniform TV defini-
tions proposed before, the application of these two composite TV in-
dexes has been increasingly considered capable to introduce a more
comprehensive assessment for temperature variability (Guo et al.,

Fig. 3. Country-average exposure-response curves (smoothing using natural cubic splines with df=3) between TVdaily, TVhourly and mortality in China,
UK and USA. The continuous bold lines represent the estimated mortality risks and the grey areas are the 95% confidence intervals.
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2016; Hu et al., 2019). Calculation of TVdaily merely relies on very few
temperature values (i.e., maximum and minimum temperatures), and
fails to account for the temporal variation in temperature. TVdaily tends
to show a large exaggeration of the tenuous hourly variations as illu-
strated in Fig. 2. By contrast, TVhourly is generated from the standard
deviation of finer-scale temperature monitoring records. The hourly

temperature records provide sufficient data to better capture the vari-
able temperature within a short period of time, and could reduce ex-
posure measurement error for temperature variability. From this per-
spective, TVhourly can better reflect the actual patterns of whole-day
temperature fluctuations (Cheng et al., 2017; Zhang et al., 2018b).
Despite this, our results also supported the recent argument that TVdaily

Fig. 4. Mortality changes (%, 95% CIs) associated with per 1 °C increase in TVdaily and TVhourly along various exposure days. The solid dots are the average
effect estimates and the error bars represent the 95% confidence intervals.

Table 2
Estimated excess mortality risks and attributable fractions (%, 95% CIs) due to TVdaily and TVhourly along selected exposure days in China, UK, and USA.
Lag/country ERR (%, 95% CI) AF (%, 95% CI)

TVdaily TVhourly TVdaily TVhourly

Lag 0–7
China 0.93 (0.12, 1.74) 0.97 (0.18, 1.77) 3.69 (0.51, 6.75) 2.59 (0.10, 5.01)
UK 0.33 (0.15, 0.51) 0.41 (0.21, 0.60) 1.14 (0.54, 1.74) 0.98 (0.55, 1.42)
USA 0.55 (0.41, 0.70) 0.51 (0.35, 0.66) 2.57 (1.97, 3.16) 1.67 (1.15, 2.18)
Lag 0–10
China 1.09 (0.22, 1.96) 1.26 (0.36, 2.17) 4.04 (0.62, 7.34) 3.03 (0.36, 5.62)
UK 0.42 (0.18, 0.66) 0.46 (0.21, 0.71) 1.31 (0.61, 2.01) 1.07 (0.58, 1.57)
USA 0.57 (0.44, 0.70) 0.51 (0.35, 0.68) 2.83 (2.13, 3.53) 1.84 (1.27, 2.40)

Abbreviations: ERR, excessive relative risk; AF, attributable fraction; CI, confidence interval.
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could act well as the surrogate when estimating the acute death or
hospitalization risks associated with TV (Guo et al., 2016; Zhang et al.,
2017b; Zhao et al., 2018a). In this multi-city investigation, we identi-
fied generally similar exposure-response associations of TVdaily and
TVhourly with mortality risks. The potential overestimation of the at-
tributable mortality burden, however, should be well noted when using
TVdaily instead of TVhourly. Here, we thereby recommend the choice of
TVhourly for future research, so as to achieve more comprehensive un-
derstanding of health burden in relation to unstable weather.

In this multi-country study, we observed increased mortality risks as-
sociated with exposures to large TV. A 1 °C rise in TVhourly at lag 0–7 days,
for instance, was associated with an increase in mortality of 0.97% (0.18,
1.77) in China, 0.41% (0.21, 0.60) in UK, and 0.51% (0.35, 0.66) in USA,
respectively. This finding coincides with large bodies of prior DTR-mor-
tality investigations conducted in China (Zhou et al., 2014), UK (Zhang
et al., 2018a), and USA (Lim et al., 2015). Also, recent years have seen
growing evidence based on TVdaily (Guo et al., 2016; Yang et al., 2018a;
Zhao et al., 2018b) or TVhourly (Cheng et al., 2017; Hu et al., 2019; Zhang
et al., 2018b) locally and regionally. Consistent with these multi-city
studies, we also identified approximately linear increases in mortality as
TV exposure raised. This short-term association could be partly explained
by the response inefficiency of human's thermoregulatory system to the
sudden temperature changes within a very short period (Hu et al., 2019;
Yang et al., 2018a; Zhang et al., 2017b). Two elderly cohort studies con-
ducted in New England (Shi et al., 2015) and 135 US cities (Zanobetti
et al., 2012), also provided longitudinal perspective for the shortened
survival induced by long-term increases in summer temperature varia-
bility. These increasing epidemiologic evidence for risk triggered by large
TV exposure, in the context of climate change, highlights the need for
global efforts to reduce population vulnerability to both extreme and
unstable temperatures.

TV-mortality associations may vary by locations due to substantial
differences in climate characteristics (Guo et al., 2016; Lee et al., 2018;
Yang et al., 2018a). Pooled estimates of TV effects derived in our study
were generally larger in Chinese communities than those derived in UK
and US cities, but comparable to a recent nationwide study in Japan.
We estimated an increase of 0.93% (95% CI: 0.12, 1.74) in all-cause
mortality associated with a 1 °C rise in TVdaily at lag 0–7 days, for ex-
ample, while this estimate was 0.90% (0.82,0.98) for 47 Japanese
prefectures (Ma et al., 2019). As for TVhourly, the pooled mortality effect
(0.97%, 0.18 to 1.77) for Chinese southern communities in this study
was relatively smaller than that for Zhejiang province, China (1.5%, 1.3
to 1.7) (Hu et al., 2019), but stronger than that for Australia (0.51%,
0.33 to 0.69) (Cheng et al., 2017). Regardless of the risk differences
between above research, we consistently attributed a notable fraction of
mortality burden (ranging from 0.98% to 5.33%) to short-term TV ex-
posure, which could be comparable to or higher than burden from high
temperatures or heatwaves (Cheng et al., 2019b).

As illustrated in prior evidence, city-level characteristics (e.g., de-
mographic, sociological and climatologic) may have an influence on
population vulnerability to temperature variability (Cheng et al., 2016;
Ma et al., 2019; Yang et al., 2018a). Also, our study provided suggestive
evidence of potential modifying effects of latitude and temperature on
TV-mortality relationship, showing that persons in warmer locations
exhibited higher vulnerability to mortality risk induced by large TV.
This finding echoed to several recent large-scale time-series studies in
China (Yang et al., 2018a), Australia (Cheng et al., 2017), and UK
(Zhang et al., 2018a), as well as a previous combined analysis of four
US cohorts of elderly people (Zanobetti et al., 2012). For example, for
each 1 °C rise in mean temperature, TVhourly-related death risk increase
was 0.09% (95% CI: 0.03 to 0.15) in five Australian capital cities
(Cheng et al., 2017), and TVdaily-associated increase was 0.08%
(0.01–0.15) in 31 major Chinese cities (Yang et al., 2018a). Never-
theless, another multi-country study from 372 locations (Guo et al.,
2016) showed inconsistent results when using short (0–1 days) and
longer TV exposures (0–7 days). Using data spanning over 40 years in
47 Japanese prefectures, Ma and colleagues found no significant effect
modification of latitude or temperature on TVdaily-mortality associa-
tions (Ma et al., 2019). The underlying reasons for these less consistent
findings across studies remained unclear to date, and further epide-
miologic and mechanism researches are called for to help manage
health risks of global, regional, and local climate change.

Several limitations of this study should be acknowledged. First, TV-
mortality associations estimated for China here were less re-
presentative, because we only included 8 southern communities in
mainland China. Second, the datasets from China, UK, and USA covered
quite different study periods, which may have weakened the compar-
ability of TV-associated effects between countries. Third, in our main
analyses, we did not consider the potential mediating, confounding or
modifying effects of ambient air pollutants because of data unavail-
ability. Additionally, we only investigated TV-associated all-cause
mortality risk and burden, as age-cause specific mortality data was not
included in our dataset.

5. Conclusions

In summary, our study added multi-country evidence for increased
mortality risk associated with short-term exposure to large temperature
variability. People in warmer locations may exhibit high vulnerability
to TV-related mortality impacts. Daily and hourly TV exposure metrics
produced generally comparable risk effects, but the attributable mor-
tality burden tended to be higher using TVdaily instead of TVhourly. Our
findings may provide some important implications and directions for
future research investigating TV-health relation, and contribute to ef-
ficient management of public health risks in the context of global cli-
mate change.

Table 3
Estimated percent changes (%, 95% CIs) in the association between temperature variability at lag 0–7 days and mortality per an IQR increase in community-level
predictors.
Predictor IQR TVdaily TVhourly

Estimate (95% CI) p value Estimate (95% CI) p value

Country
China – Reference Reference
UK – −0.59 (−1.41, 0.23) 0.158 −0.55 (−1.14, 0.31) 0.209
USA – −0.37 (−1.17, 0.44) 0.370 −0.45 (−1.29, 0.40) 0.296
Latitude 9.5 °N −0.17 (−0.30, −0.05) 0.008 −0.14 (−0.28, 0.01) 0.066
Longitude 93.5 °E −0.15 (−0.35, 0.06) 0.158 −0.07 (−0.30, 0.16) 0.555
Average temperature 6.9 °C 0.22 (0.05, 0.39) 0.011 0.20 (0.01, 0.40) 0.040
Temperature range 22.0 °C −0.00 (−0.20, 0.20) 0.989 −0.16 (−0.37, 0.06) 0.152
Average DTR 3.0 °C 0.12 (−0.04, 0.28) 0.153 0.08 (−0.11, 0.26) 0.407
Average humidity 8.5% −0.04 (−0.15, 0.08) 0.543 0.01 (−0.12, 0.06) 0.874

Abbreviations: IQR, interquartile range; DTR, diurnal temperature range; CI, confidence interval.
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